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PREFACE

This document is the result of 2 years of independent research and study in
the area of minimum distance theory and its application to geodesic measure-
ment and surface navigation. The purpose is to develop a new approach to
solving the problem of getting from point a to point b on well behaved sur-
faces. The study is confined to the use of curvilinear coordinates (ul, Uy,

u3) and to surfaces which can be represented by a function, k, such that:

ug = k(ul, Uz)’ (ie, surfaces where one coordinate can be written as a

function of the remaining two).

In rederiving the relations which determine the gendesics or curves of minimum
distance, we shall see how using parametric separation of variables, along
with the above coordinate variables and surface restrictions, greatly simpli-
fies the problem, thus giving manageable solutions.

The paper addresses the development of solutions not just from the point of
theoretical interest, but in terms of product useability, for eventual soft-
ware implementation. By product useability, I mean we need toc know more than
just the relations between u, and uy for an arbitrary minima curve, we need

explicit relations for distance traveled and direction (measured normally on
the surface) of the minima curve. Thus, we consider a closed set of eguations
the solution for a given surface (and initial and/or boundary conditions) to
be of the form:

uy = k(ul, UZJ (surface constraint).

u, = f(A) (parametric separation, first variable).

u, = g(x, a, b) (parametric minima solution, second variahle).
As = s{A, a, b) (parametric distance traveled).

v =y, a, b) (azimuthal heading, 0-360, off a known constant/known
direction).

where A is the parametric separation variable, and a and b are constants of
integrations which {assumably) uniguely determine the curve.

Several surfaces are addressed, but most rigorously treated is the sphere,

where the second order, nonlinear differential equation which governs the
extremum solution is solved for both boundary condition and initial condition
cases, as both cases are of physical interest.

THIS TECHNICAL NOTE IS THE WORK OF DOR. K. CARLTON-WIPPERN AND DOES NOT
NECESSARILY REPRESENT THE OFFICIAL VIEW OF THE US AIR FORCE.
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The nature of the oblateness of the earth is very briefly discussed, and a
first order, perturbation approach (based on ez, the square of the eccentric-

ity) set of equations are developed. A comparison o? the e? perturbed solu-
tions to those of the unperturbed spherical solutions is discussed in appendix

I. The e’ perturbed solution set constitutes the mathematical foundation for
Project Frost (First order formulae relating to oblate spheriod trigonometry).

While the purpose of this document is to provide useable products, not just
address theoretical development, some attention has been paid to the existence
and unigueness of solutions, particularly in the spherical case, as there do

exist traps for the unwary.

The application for the equations and solutions for the problems addressed in
this document runs the gamut from commercial to governmental, particularly
mapping agencies, and tactical and strategic defense organizations.

The mathematics developed herein are for use only as solutions to problems of
surface geometry, curves of minimum distance. No attempt has been made to
carrect for physical phenomena, such as wind, geopotential, tides, currents
etc. Corrections for heading and positioning are outside the scope of this
study.

The format used is necessarily terse, and the document assumes the reader to
be proficient in variational calculus, differential eguations and linear
algebra, as well as spherical trigonometry and in other applied
mathematics/physics curricula.

TC-2
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I. INTRODUCTION

The investigation begins with the general distance equation:

(ds,ds) = gabdxadxb

ar

t

1 o B\1/2
oo (e 2E o) a
t

0

for a space curve given by xt = xT(t).

The curves -of minimum distance (or geodesics) are found by solving:

A0 o ad .
dsz B ds ds
where
To [ dg g og
e % gc + ZB - ag , called the Christoffel symbols of the second
apB 9 X % Ix

kind.’

For the purpose of this investigation, consider curvilinear coordinates only
(which greatly simplifies things, reference Lass® or Mors#®and Feshbach?)
alsa, the investigation primarily works with Rz, and assumes if Uy, U, and

u, are curvilinear coordinates there exists a surface function, k, such that:

U, = k(ul, u,) .

3 2
The distance formula becomes,
211/2

2 2
du du du
(e 2( 2 ) 2( 3 )
SJEH<BT) ‘“hz(a“ " h\a o v

lLass, Vector and Tensor Analysis, p. 288.

lLass, op.cit., n. 281.

zMorse and Feshbach, Methods of Theoretical Physics, p. 47.
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where hl’ hz’ and h3 can be called scaling ?actors.3
Seek parametric solutions for Uys Uy which will minimize s, since
ug = k(ul, uz) .

The solutions (for u,, u2) can be written parametrically of the form:

u

uy fA)

u, = glx) .

f can be chosen arbitrarily (to facilitate integration), find g(X) via the
-usual methods of variational calculus,u
2
(3
1 i\ dA

with u, = k(FA), uz), u, = £()), then extremum is when:

d (38 38 g L
Flowg) | % 2 =X

letting u, = g,

—
0]
ct
[og]
N
!
e w

»

2

h 2

3 . dk, @ dk)_d 1 2<dg> Cdk L9 (dk) }

T ‘“ag<—dx T[B’E‘z >/t @ @ =0 . (2)

ag

N

Rearranging 2a, taking a degree of freedom to facilitate integration, for
example, assume there exists a function, f (= u;), which sets

d 1 2 dk ] dk 1 2 dk 0 dk \ _ .
ar[s(hs'arsg(d‘x))] ‘E'%'d‘k"'@(?ﬂ”)‘o (2a)

3Spiegel, Advanced Mathematics for Engineers and Scientists, p. 288.

“Courant-Hilbert, Methods of Mathematical Physics, p. 164.
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then taking this degree of freedom for f leaves

hZ .
d. 2g |
> = /= 0 (2b)
2 -
h,g = o

2 2

‘+'2_ 2. 2( df 2 -2 2( dk .
h2g 'C’EH(HX_) +h2<g >+ h3<a—>\—>] (3)
but

2 2 2
4 ~2 2.2 -2 2 2 ( df 2 ok ok -2 ok , 8k -
pg T e = h1<——d>\) *%[(ﬁ) *<s‘g>g MY sg%} - (3a)

Rearranging and collecting terms:

Ag’? + 2Bg + C =0 (4)
AL ,g) = 02<h§ N h§<?—;->2>- hy

B,g) = c*hs <?—§—><3§>

COh,g) = cz[hf@;f . h3<g£>2:| .

Now calling

nh,g) = -%{B x Eaz - Ac]l/z}.

And assuming n can be uniquely determined by the boundary, surface/other logi-
cal elimination conditions, then

g’=n(>\,g) . (5)

The geodesic curves are found by choosing f to meke equation 3 possible, then
solving the integral equation:

g () =“[Fn(k,g) dx . (8)

This can be considered a navigation kernal, in that for a surface defined by
k, the constraint condition for f, equation (2a) and the solution to equation
(6) gives us the parametric equations of the path(s) of minimum distance, sub-
ject to the boundary conditions (end points of the curve on the surface).
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While traveling on a curve of minimum distance, it is convenient to know in
what direction to go to remain on the curve. Using the natural definition of

>

the tangent vector <= gﬁ)aids getting around on the curve. If,

ds
u; = f(x)
u, = g)
uy = k(A), and if él, éz, és are curvilinear unit vectors, then:
> of g ak
Do=h ox B *hyox & *hygn 8 -

(Compare this result to the contravariant vector.s)

If. the surface on which the navigation is taking place can be written as
S(ul, u, , u3) = 0, and the parametric curve of minimum distance can be
written also as a surface C[ul, Uy, u3) = 0 such that the two surfaces inter-

sect in the space curve of minimum distance, then the heading vector H can be -
written as:

H=VgxVs .

To demonstrate this, let S, the surface on which the navigation is taking
place, be represented as locally (approximately) planar.

Similarly, let ¢, the surface associated with the minimum distance constraint,

be approximately planar (this is roughly equivalent to using affine approxima-
tions to the actual surfaces about a small, differential area of local inter-

section, assuming the intersection exists].

5Lass, op.cit., pgs. 270-272.
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—

4

- / 5,
s A

intersection

The intersection (of the two planes) is a line. Let Nz be the surface normal
to S and N. be the surface normal to ¢. the direction of H (if not = 0) is
clearly b= Nl X Nz by construction. In the limit that the differential planar
surface approximations go to zero m2+ vs, Nl »Vz, so that 3 = Vg x VS

(gradients to be evaluated at a point of interest on S).

So long as H = 0, the megnitude of |[H| is relatively unimportant. It is the

I

direction of H which matters. Eventually, |F| drops out of the analysis

entirely, it is from the components of H that heading angles are determined.

(The same argument is true for D(A).)
II EXAMPL?géN CARTESIAN COORDINATES

a. Application to the planar surface.

(&) @) @) )"

For this example the surface is defined as a plane.

n

Z = a+ bx + cy

and search for g(A) such that the integral is extrema. For example, let,

X =X
y = g(d)
z=a+bh +cglx) ,

then
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s =II: + <g’)2 + (b+cg’>2]l/2 dA

- . g8

g “dx .

With ¢ = integrand, note that-%g = 0; therefore,

EL—<§£L—> = 0, and after integrating once:

dx \ag’

-

V. g +o(b+cg ) |
E . g'Z . (b . Cg‘)Z]l/Z

Continuing with:

[1 + g‘z + ( b + cg’)%J 92 = [é’ + C (b +'cg’ ) ]2

This is a quadratic eguation in g’, of the form:

(e is a constant of integration).

-

Ag 2, Bg' +C =20 (A, B and C are constants]. .

Now, solving the eguation for g’, let

g' = D, assuming D to be unigquely determinable from the geometry,
then

g(A) = DA + E

:afe substituting back

X = A
y = DA + E
z =Fx + 6 [= a+ bx + c(Dx + E}]

This is the parametric eguation for a line in R3.

If the line passes through points (xo, Yq? zo> and<'xl, Y, Zl)

then,

><=(><1-x0))\+x0
y = (vi = %) * ¥
z=(zl-zo)}\+z0
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is an appropriate expression.

Letting a = X) T Xy b = Yy T ¥ € =2 T 2
then,

D= af + bj + ck*

and for distance

As V) =(az o2 . C2)1/2 AL

The parametric equation can also he written

X a X

0
y|=1b |2 +1y,
z c Z0

The forms are equivalent.

>

*D, a tangential vector <the tangential vector is often referred to as

T = gg; so that T = -g ) , this is equivalent to saying ¥ = constant on the
0]

reference surface, where ¥ is a heading angle measured on the surface,
referenced from some known directional vector.




1 March 1988 ' TECHNICAL NQTE

b. Minimum distance solution.

Consider the following diagram

Pe g

To find the minimum distance from p to the curve g, let @ be a plane (in par-
ticular, the x, y plane). If f is the solution to the minimum distance
problem on a plane, f is a line of the formy = ax +borx =ay +b ,
then the minimum distance between p and g lies along a curve f, hence if

P =( Xq » yo) , letting x be the independent variable, then,

(8s)2 =(x-x )%+ (200 -yy)”

and this is extremum when §§-= a.

, ‘d
0 =(x g ) e (800 - y)gs

(7)
so that
X = X
4 (X 7%) (8)

dx ( g(x) - yo) )

Solving for x (on g) in equation (7), let the result be x,, then find v =
g( xl) [%ssuming g( xl) # y;] and, constructing a line From( g yo) to

('xl, y1> solve for As. Equation (8) indicates that the line Frmn( Xor Yo )to
( X1 s yl) intersects g at right angles. There may be more than one solution

to equation (7), in which case the absolute (instead of relative) minimum
would have to be found, assuming one existed. Whatever the case, the solu-
tion, by equation (8), guarantees that the line segment intersects g as a per-

pendicular.
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In that a smooth, well behaved surface can be represented as a limiting number
of planes, (ie, a surface S can be approximated by n, 1imn+°° differential
planar surfaces or affine surface approximations) it seems plausable that if g
= %, ¥ a minima curve on a surface S, then if p is a point on the surface but
not on ¥, and if ¥ is another minima curve which goes through p and intersects
F oat right angles, then $" is the curve of minimum distance between p and f.

As will be shown in the spherical development, ?" need not necessarily he
unique for the general case. Stated mathematically

-+

Let p ¢

-+
1
—+»

=

and let %
and

¥Fo-oF o

Then ¥ minimizes Jﬂds between p and ¥ if there exists AO such that
?F(Ao)= :c‘p‘o)’ =P

and

D(F) « DF) =0 (%, ¥ evaluated at AO ) .

tow with D) - 92 db . do 5 %t
Now with D(F) = hl e " h2 T8, + h3 o 23
hence:
2 da da 2dbh db . 2de dc
Mac @ ® " m™ "Moo | -0
(apriori uniqueness not guaranteed.)

A 4, a(r) 5 T ’ a:(k)
*ig, f = u, = b(A) , f =1 u = o) .

A -~
Uy c(A) Uy c (A)

It must be remembered that this case is concerned with solutions to second
order differential equations with boundary conditions. Oepending on the sur-
face geometry and the boundary conditions, the minima solutions may not be
unique, as is shown in the spherical section.

The Cartesian example is finished by working out explicity the point to line
on a plane example.

**Compare this with the definition of the contravariant vector, note also
ds = (O« D)Y/%a.




1 March 1988 ' TECHNICAL NOTE

(XO s YO)

y=mx + b

(s)? = minimum (x~, v

(xo - x)z +(y0 - [mx + b])z

~~
&>
w
N—
N
]

D1Q
X |
1}
o
]

= -(% —x)+ bmwyo-[mx+tﬂ)

X o+ My, = mb

X = 0 5 , call this point x" .
T+ m
2
mx, +my +b
- » 0 0
y =m (x ) +h = > .
1T +m
. YT Y
Slope of intersecting line =
X T X
2
m><0+myo+b_y
_ 1+ 2 0 _ MXg = My + b ]
X T MYy T mb - x -mx +my.-mb m
> 0 0 0
1T +m
NOTE: Slope of y = m, slope of intersecting line = - %u JED.

IITI EXAMPLES IN CYLINDRICAL COORDINATES

a. Application to the cylindrical surface.

&) @) @] -

For the first example define the surface constraint to be that of a cylinder.

10
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Search for 8 = g(A) such that the integral is minima.

Letting z = a\, abtain

Noting %% =0 ,

then,

g——<§—6—,—> = 0, and integrating once

dx \dg

g‘<1 + g’z >—1/2 = C

-2 2 2 -2 - C

A R T ey v
1 -¢

and

gd) =8x + 5, 0(A) = 60 + BA

The solution in parametric format

r=a
zZ = a
e:

80 + BA

[also z = -g’-(e - 60) after eliminating )\].

Now,
s =j(’| + Bz)l/zdk solves as
Al
As = a<’l . 82)1/2 .
A0
Letting e = 1z > 8, = 1r‘ , 83 = 14

1
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=
A A A ~
= al_ + 1 = gi_ + aBi .
D i, rd N ai_ 816

>
NOTE: D = Constant, independent of AX.

H>

>

OF
=

Y is defined as tan ¢ = = g, ie, ¥ is a constant.

- 1
Z

O¢

Similarly, the surface function is defined as S: (r - a) = 0 and the minimum

disténce function is f: -z + §-<6 - 80 ) = 0,

B
then,
H=Vfe Vs
_ a2 1/a\zs _ _2 1z
vf = 112 T ( B ) g = 71 T Bhe
58 =i hence,
1Z 1P 1
PN _’I" *
H 0 1 0 = E-lz *lg .
1
1 0 B
H-ie
This results in tan ¢ = < — = B.
H . iz

12
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NOTE: The heading angle ¥ is easily obtained when either D or H can be

written in only two coordinate directions, that is to say, given curvilinear

u, u2, u3, if the surface can be written such that uk = constant, ¢ is easily

found by dot product of 0 or H by the remaining unit vectors é{, éj (i,j # k).

If not, rotate B or H as necessary to produce a meaningful result (reference
IVb for additional data on the heading angle).

The five equation solution for the cylinder is:

r(A) = a
z(A) = ax
0 = +
\) 60 t BA
Al
as) = a1+ 82 )% |
}\0

YA} = tan * g .

b. Application to the spherical surface. Another example in cylindrical
coordinates is as follows:

2 2 2 /2
o = dz . ([ dr . 2/ ds
° f[(ax) (d7> a (“‘m) ] cir

The surface constraint is defined to be that of a sphere,

2 2 2 | 2 24\1/2
r +z =a, [; = * (a - r ) ] .
2 a2 L
Choosing r~ = , which 1s obtained from the following analysis:

1+ A2

From,

- JlE) () ()]

and since z = f(r} only

() (2) ()]

13
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Then with rz + 22 = a2
dz _ . r
dr z
{9z Y o _ 2
dr 2 2
a - r
Letting r = af , r? BZFZ , 8 =g g§.= g’

s=af{ i : F'2+F2g'2}1/2 oL
(1-+4)

Define the integrand as 6, and by inspection, 3% | o,

9g

. 34
once, — =

g
2 - g2 2»2-11/2

g =2cC > +-Fg
0= f J
s2 2 |f ™ -2 »z-l
g = C + f g .
v -
- J

Take a degree of freedom by choosing f such that,
F'ZF'L’=1
1 - £
e (- 2)2
- =, let = sin u, of = cos udu
2(1-+)
csczudu = dA
-cot u = A
—(1—?2)1/2=>\

qF
1—2F2=>\2 ,_1_2_=}\2+1 RECI = .

f f 1T+ A

14
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so, already integrating
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. 2 2 2
Now, since r = af, r2 =af ,r = a

d 2 2 2
(57 - iy
dA (1 + 22 )3

(d_z.>2 (g2 91:)2 L8
da dr da (1 . AZ )3

7 then continuing:

& A 1 L) L)’
(1+22)% (1+2%2)% 142 (1+2%2)2 1422
%§.= o, %§7-= c (integrating once).
g g
2
g‘2=02+02 2(,‘ >\2), 32= (32
1 ~c
- B8
& T (1 -e2) 2

Now, parametrically:

a .
r = (assuming r > 0)
(1 . 22 )1/2
-1
8 = 60 * cos BA
> = aA

=+
'(1 M2)1/2 *

To eliminate A, start with

» =8 cos(e-06,) =8 cos(o, -6)

then choosing,

2 az

1 +8 2 cos2 (8 - 90 )

15
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continue with,

F2 + PZB-Z 0052(6 - 60)= az

rearranging and multiplying by g2
2 (& 2 2 2 2 2 2 2
r(—;) cos (8 - 0,)=¢z (z" =a -r")

hence,

r(%)cos(e -8, )=z .

Collecting factors and rearranging to Cartesian coordinates, obtain
ax + by + cz = 0 which is the equation of a plane confined to contain the
origin.

NOTE: x =y =z =0 always a solution.

c. Application to the conical surface. Another example in cylindrical
coordinates.

Sl () 22"

-

Define the surface constraint to.be that of a right cone:

r=az ,

let,

r o=

Szj[ ?_,21/2A <Y2=1+1_>
2
a

as before

_8__6_=D’?—_6__=C’

dg ag '

then rearranging:

L »2 2 2 2.2 -2
Ag =cy +cCcAg

g = v/ﬁ 73 (A = fc , dx = cdf)
(*F2 )1

g =08_ =% sec = f

16
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hence:
r = ai
Z:—a..k
a
-1 A
6 = 60 + Y sec <
2 2 1/2
Ag = avjﬂ Y2 + -fi;i——_l dA
2 2
AT -]
AdA
= ay
j.(kz _ C2)1/2
kl
2
= a (K - o )1/2 l (A > c).
A

IV EXAMPLES IN SPHERICAL COORDINATES

a. Application to the conical surface.

(ds)? =(ap)® « p? () ? + 0% sin’s (ae) 2

The surface constraint is defined to he that of a right cone,

¢

constant, which can be defined as

o = tan-l o .

Letting
p = ar
and
2
sin” ¢ = Yz = &
2
1+ a

continue with:

.- aj<1_+ Y2)\2g'2)1/2 »

17
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38
LR

a8

— =c

»

og

and
2 Y2>\2< A2 - g2)g?

o B (B2 - 2) I

n

YA
1 -1 YA
= + = 12
g(A) 90 ysee o -

2 -1/2
C YAdA
As = a 1+ ——— dr = a
u[ﬁ< dzkz - cz ) v[k YZAZ - cz )1/2

2y 1/2
As=a(A2--‘3-> -2(hk2 - )V
2 Y
Y
(2) Conic heading vector development.
-1
s =¢ - tan " «a
ac . - . .
f = - T Sec Y (9 - 90 )+ o (choosing the positive direction).
i i, ig
-)-_-) > _ _ ac _ _
H=Vf x Vs = 1 0 s oing Sec U tan u (u = y(e 60))
o 1 0
P
A =< —23C  sec u tan u) 1 1 i .
. o p 6
p sin ¢

18
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Now, looking on the conic surface:

A A
A A
i 1
0 z 4
> 16
H N
Y g 1
.
0 lr
cos ¥ = Ipl ac _sec u tan u ( sin ¢ = |ﬁ|.l )
2 . P
p sin ¢
. p sin ¢
tan y ac sec u tan u
Now,
sin ¢ =1,

and from f:

ac sec y (6 - 60>
5 =

Thus,

1

tan ¢ = tan u

= cot vy (6 - 60) .

Now, to show the equivalence between H and 5, choose

p = ai
¢ = Jtan—l a

_ 1 -1 T
8 = 90 + ¥ sec c
obtain,

(p = ax , sin ¢ = v)

D.iD.
> @
~—
pi->
@

D = aip + pwi¢ +p s5in ¢ (

19
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- t A _‘E- ~
D=a |1 + i
o YA (Yz)\z ] 1) 1/2 8
C 2
[

L c i
Now,
D - ip =a=cos ¥y |D]
N 2.2 1/2
: YA , .
D iy = a( > -1 ) = sin ¢ |O]

(59‘32 [Y(e - 90)]- 1)-1/2 = cot v (& - 8, ) GED.

ct+
)]
3
<
i
PN l
|—<
a1 >
N
N
]
L]
]
L
~
N
It

Notice when the surface constraint can be written u, = constant, the coor-

dinate system can be gonsidered surface normal. In such a system, when T is
evaluated, only two components are present. These components are along
orthogonal topocentric unit vectors on the reference surface. The five
equation solution for the cone is:

p(A) = ar
p(A) = tan_1 o
2
- 1 -1/ YA 2 a
O(A)—eoi?SBC (C ) (Whepey = 2>.
1+ a
2 1/2 X1
= 2 2 c
As(x)—a(x -12) .x <x21)
0
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2 -1/2
St B N 2.5
Pp(A) = tan [( . > J .

b. Application to the spherical surface. Define the surface to be that
of a sphere:

o = a (constant) and search for 6 = g(A) such that the integral is a minima.

2 2 2]1/2
Iy () o(2)] o

(1) Solution by parametric separation of variables. The differen-
tial equation for spherical integrating factor is obtained from,

o 2 2\1/2
As=af<(%¢i—) +sin2¢<g—g>) drx .

Let,
¢ = F
0 =g

Ag = ahjf<F’2 + sin2 Fg‘z )1/2 dx .

Noting,
3B gy
g

then, integrating once:

33 sin’ Fg‘

—— = O =

3g” (F»z . aind Fg’z )1/2

2 .2 - L4 2
CZFZ + ¢ sin fg Z . sin fg
-2 ;2
2 -
CZ f P - S g 2
. b . 2
sin f sin f

-\ 2 -2
Cz( f ) . 2 gz .

sin™ f
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Choose f such that:

-

L I
sin? £ a2
df _ dr
2

sin2 £ A

cscC ‘Fd'F='>:I—

-cot f = -

>

f = tan-1 A

so that

¢ = tan-1 A (A = tan ¢J}.

Then,

de _
dx‘o ’

U

@
i
0
—
>
~—

[y )T
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and integrating once gives

constant of integration

jie]
L}
0
(2]
(@]
1}

2 >\2 .
———— § ——
1+x2> ('I+A2)g:|

PRI C»z)‘2<1 P 22) g2

T
RN
+ >
N
>
N
~—
N
0Q
Y
N
[}
O
AY
N
P
_

y -2 22,2 2 2.4 #2 -2
Ag o - CoAg -Cc Ag >

(1-2 g2 - %2 - o2

Azg’z [( 1 -2 )Az _ C»%] - o2

=)

I
(w}

-

o t c
A’[K 1-¢c2)a2 - Dale/z :

Setting

-2 1 - 0‘2

-2

~

O

_ dg
glg) = tu]'
q(qz_,!)l/z

glq) = 9, sec ! q

I+

sec_l %_ ( with 60 and B constants of integration ).

i+

glA) = 90

Parametrically, the curve is

p = a

1]
t
al}
3
>

¢
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1
= I Sec’
e e

'UD|>’

To gain further insight as to the nature of this curve, work backwards as
follows:

_ -1 A
0 eo = 8BeC T
A =8 sec(0-9,)
A= = i
-c8  cos (6 - 60>
- -C
acos 8 + b sin 6
where,
-1
a = -cB cos 60

b = CB—l sin 60

and substituting tan ¢ for A

~C
acos 8 + b sin 8

tan ¢ =

NOTE: This equation relates ¢ and 6 explicity, ie, ¢ = £(8) or F_l(¢) =9 .
Continuing with:
asin¢ cos ©® + b sin ¢ sin 6 = -c cos ¢ .
Multiplying this through by the term p and rearranging gives:
alp sin ¢ cos 9] + blp sin ¢ sin 8] + clp cos ¢] =0

Now, recognizing the relationship between spherical and Cartesian coordinates:

x = p sin ¢ cos ©
y =p sin ¢ sin 8
zZ =p cos ¢ .

This constraint equation, in Cartesian coordinates, becomes:

ax + by +cz=0 .
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This is a plane confined to pass through the end points (boundary conditions)
and the sphere origin. The solution for set boundary conditions is unique
provided the end points are noncolinear with the origin.

NOTE: x =y = z = 0, always a solution to the constraint plane.

Since the solution is confined to a plane (ie, linear) and the curve must be a
GREAT circle (ie, includes the system origin) the distance between end points,
s, can be written:

-

s =adli |,

where A is the angle between the origin and vectors which point to the end
points. These vectors can be called:

> - ~ " ~
- . 6 3 + ai . >,
po a [;1n ¢0 cos 01 sin ¢0 sin SOJ cos ¢0k]

and,
> - . 2 . . 2 o
p, = @ [%1n ¢1 cos 611 + 51n ¢1 sin elj + COos ¢1k] .

Note,

> + .
Pyl = Ipyl =2

and from linear algebra

B . P
O S
BTN
therefore:
cos A =

i i > 9 5 6 3in ¢ sin 0. sing in 3

sin ¢0 sin ¢1 cos 0 cos 9, + 31n ¢0 sin 0 51d@l sin 1
+ COs ¢0 cos ¢1

cos A = cos ¢0 cos ¢l + s1n ¢0 sin ¢1 [%os 60 cos 81 + sin 60 sin ei]

cos A = cos ¢0 cas ¢l + 51in ¢0 sin ¢1 CcoS (60 - 61) .

This is exactly what Naperian spherical trigonometry (law of cosines) tells
the reader to expect. The spherical law of sines can be recovered via
geometrical construction.

25
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If a boundary value problem is solved in such a way that a minima curve goes
through two points, 50 and 51, then the minima solution is a plane of the

form

N is the planar normal vector (plane of the great circle) of arbitrary

magnitude. Then given 5 , B, N can always be constructed (of arbitrary
g g 0 y

-~

magnitude) as N = Pg X By - If N2 0 when p, = £ Py - the solution is
nonunique. In this case, there are infinite solutions which can be obtained

by finding N such that either

>

P, °

=+
"

0 or, eguivalently

Py N =20 .

(1) Spherical detail on H, the heading vector. Oefine Py and p,

as points on a given minima curve. On the sphere, prerotate the coordinate
system such that p, is in the same plane as the zero longitude and refer to p,

in terms of (¢1 , Ae) .

A review of spherical coordinates.
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With p, at 8 = 0, and using unit vectors:

Py == (xd +yj + k)

—— = gin ¢0§ + cOos ¢0Q

Po
Po

and for arbitrary p,

p . 2 . . 4 o

l_ - sin ¢1 cos AB1 + sin ¢1 sin AB83] + cos ¢lk .

Py |
Now,

Po Py 2 . . . .

e X — =1 (-~ sin ¢ sin A0 cos ¢ ) + j (sin ¢ cos A6 cos ¢
Py | 1Py | ! 0 ! 0

0 1

- sin ¢, cos ¢1) + k (sin ¢0 sin ¢1 sin A8)

alsao,

Vf - Po

VFllp, Imy ]
since
Vf = 25-(x§ + yj + Zk) , T the spherical surface function,

a

and

-Q;E- = sin¢.1 + cos ¢ Kk

IVFl 0 0

Po

Therefore:
H = N x VF*
N = py %P

*By definition, also refer to geometrical interpretation, since N = Vg, the
minima surface, (ie, plane).
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and

. 2 .
sin ¢1 cos AB cos ¢0 - cos ¢1 sin ¢0 cos ¢0
-~ = 3 » e .
Hr sin ¢1 sin A
. 2 s A8 &5
cos ¢1 sin ¢0 sin ¢1 cos sin ¢0 COoS ¢0

This vector now needs to be rotated into topocentric (SEZ)** coordinates.
This is done by:
cos ¢0 0 -sin ¢0

H = 0 1 O H

sin ¢0 0 cos ¢0

calling,
C = COSs ¢0
s = sin ¢0

x = sin ¢1 cos AB
y = sin ¢, sin A©
Z = COS ¢1

3 2 3 2
XC -~ Zsc - 28 +* XS5 C

¥
[}
<

SEZ

2 2 2 2
XsSCc — Zs C + ZCs =~ XC S

2 2
c (xc - zs) + 5 (xc -zs)

1
<

**SE7, a local right-handed coordinate system which points south, east and up
(or Z).

28




1 March 1988 o o TECHNICAL NOTE

XC = ZS
= y .
0
and, finally, translating HSEZ to HNEZ (using north as a cardinal point and

substituting)
cos ¢1 sin ¢0 - sin ¢1 CcOoSs ¢0 cos AS
NEZ sin ¢, sin 40

0
NOTE: The z camponent is zero, this must always be true in any case.

Now looking at the. local system:

N
]
E
v
~
N
~
tan\w = %- (9)
sin sin A8
tan ¢ = ¥ {10)

cos ¢4 sin ¢, - sin ¢, cos ¢, COS AB

—

By leaving the result as a fraction, ie, tan ¢ = ﬁy all quadrants are readily

resolved. In an absolute sense, equation 10 could have just as easily been
obtained via spherical trigonometry:
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COs C = COS ¢0 cos ¢1 + sin ¢O sin ¢1 cos A6

cos ¢1 cos ¢0 cos ¢ + sin ¢0 sin c cos ¥

sin ¢ _ sin A6

sin ¢1 sin c

continuing:
sin ¢ sin ¢ = sin ¢ sin A6
and from equation (12)

1

sin c cos 2 ———
v sin ¢0

[éos ¢1 - COSs ¢0>cos é]

and substituting from eguation (11)

1
sin ¢

i

sin c cos ¥

TECHNICAL NOTE

(11)

(12)

(13)

(14)

[cos ¢, - cos ¢, (cos ¢, cos ¢, *+ sin ¢, sin ¢, cos Aej]

T e [?os ¢1 (1 - CDSZ ¢0) - Ccos ¢0 sin ¢1 cos A6 (sin ¢0 i

sin ¢0

= —f——--[éin ¢O (oos ¢l sin ¢O) - sin'¢0 (sin ¢1 coS ¢q £os A&I

s1in ¢0

sin c cos y = cos ¢, sin ¢0 - sin ¢, cos ¢0 cos A6 . (15)
Dividing equation (14) by equation (15) gives:
sin c sin ¥ " sin ¢ sin A8
- = tan ¢y = - - ,
sin c cos ¥ cos ¢l sin ¢0 - 31in ¢l cos ¢0 cos A

The geometrical interpretation of H = N x V£ is determined from the following

illustrations:
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In this illustration curve % represents the intersection of plane @ and the

spherical surface. Clearly H must reside in @, therefore be normal to N

(ie, N+ H = 0 always).

|
j
—
| M
Py
|
|
l
|
y/

From this illustration, @  is the planar surface normal to the point p. H
must also reside in this plane. Headings (ie, north, south, east and west)

are locally defined in this plane. H must also be normal o M(M « H = 0
always).

IS)

<>

>

NQTE: N is the surface normal for plane Q, M is the surface normal for nlane
Q ).

could be defined as the intersection of @ and @ or:

T

=N o

I
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Since the magnitude of i is not a factor, just the direction, then the fact
that K+ & = 0 and B+ #f =0 can be used. From vector analysis a convenient
way of finding a vector K which is normal to both T and 0 is:
> > >
A=CxD

. o,
then define H,

B=fixh .

> . > >
Now N is obtained from Py and Py

f=b, xp

0

and M, the surface normal vector is

f=ve

where,

£ = f(x, y, z) which defines the surface.

Hence,

>

H =<EO X El) x V£  (for a sphere) .

Vf to be evaluated at a point in question.
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The space curve directional vector 0 is found as follows:

~
-i
¢ ¢
v
/],}
§)
e0
For first quadrant direct:
p =4
o = tan—l A
-1 A .
B = 60 - sec T (A decreasing, hence -1 « dA).
B = 01+ —— (-1, + (-1) A . ! (-1
P 2 2\1/2 2 1/2 8
(1+22) ¢ (1 +21?%) x(L-q)
32

-

Measure ¢ from true topographic north (ie, -i, direction)

¢

~

B = —l—<-{ >+ ! i
(1 R Xz) ¢ (1 . K2)1/2( ﬁi._ 1) 1/2 78
g2
5. iﬂ = cos ¥ D]
b 16 = sin ¥ [D]
2\1/2
tan ¢ = (1 * A ) .

2 172
(53. ) ,I)
B
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NOTE: From this cot ¢ = cos ¢ tan (60 - 8) .

_ 2 1/2
et
AT -8B

.).
For H ,

= Vg xVs
Now, from the surface constraint:
p—a=0 ,

and for the minimum constraint:

B sec (80 - 6) - tan ¢ = 0 (since in the b derivation, a quadrant in which

8 < 60 was used, thus making the argument positive).

Vs = 3
- -1 2 2 -1 2

Ve 5= sec ) iy * 5SS (B sec A9 tan AB) ig [%valuated at p (¢ , AB )] .
Then,

1p 1¢ iy
> secz¢ B sec A0 tan AD
H=1 O - - -

p p sin ¢

1 0 0
%0 - B sec 49 tan A6 g . secz ) 3 .

o p sin ¢ ¢ P 6
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Now, in the local system

v
i
¢
—EL-- i = CDS-E = -cos VY
7 ¢
|H]
—EL-- i, = sin £ = sin Y
> 0
M|
therefore,
> N 8 sec A8 tan A®
H oo 1$ - 5in o
= -cot ¥ = &
M oe 1 %ecz P
. 5 <
P
and,
B sec AB '

cot ¢ = Tan o cos ¢ tan A6
but,

cot ¢ = cos ¢ tan AB QED.
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Finally, the relation for ¢ could have been derived directly from spherical

trigonometry.

giQen b, a , find V.

b, a implies a, c, d, ¥

b= -,
therefore,
tan ¢ = tan ¢'
with
and
c+b =L
2
sin ¢ = EEJLJZ
sin s

. « [
cos d =0 = cos & cos 8 + sin a sin s cos Y
- . -
-COs 8 Ccos S = sin a sin s cos Y

COS a Cos s

-Ccas = T 5
v S1n a sin s
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sin c
. sin s sin c sin ¢ sin a tan c
-tan lp = = tan a = N L3 =
COS a cos S Cos s sin a cos c cos a cos a

sin a sin s
since
cos s = sin acos c .

Continuing with

n

N A
.

c +b

tan ¢ = cot b

cot b
cos a

tan ¥

cot ¢ = cos a tan b

but
a==a
h = AO

cot y = cos ¢ tan AD

sec ¢

tan ¥ ='tan AD

NOTE: cos s = cos acos d + sin a sind cos ¢, cos s = sin a cos ¢ for

For distance measurement:

2]1/2
As = a ! [ *-12+ A di
1+x2] A

— -1

L8
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2 1/2
1 1 A 2
As = a . -1+ 1+ dA
j’l + 22 (ﬁ_1>1/2[82 ]
2
B8
1/2
1 1 1
As = g . AdA f— + 1
f1+>\2 (ﬁ_q)l/Z [82 }
B2
2 \1/2 1
ps = a1 +8%) ~ Adh .
(1 . A2)<Az _ 82 )1/2
Substituting:
1 + XZ =y
2Adh = du
XZ =u -1

L e2)1/2 )
N b e -2 0]

Substituting back for u

e - (1 . g2 )1/2 ' 5 can-l | (g2 + 1) V2 /[0, 52
2 (82 . 1 )1/2 a2 . 52
A
2 2(1/2 "1
As = a tant ﬁ__;;ﬁ_l l .
1+ 82 | X,

The five equation solution for the sphere:

p = a
o = tan-l A
- 1A
8 = 60 + sec 3
1 a2 - g2 1/2 M
As(A) = a tan > l
17 + B AO
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2 1/2
_ -1 AT+ 1
y(A)= tan B(T“——z'> .

AT -8B
From the five eguations for the sphere, combine the equations for As and 8,
eliminating the parametric variable A.

8 =06 % sec-l %-

0
A
2 2\1/2 1
As=atanl<L——;g——) l .
1+ 8 AO
From the spherical geodesic (great circle route)'%§-= Ay, the central swept

out angle, evaluate from the top of the curve down one side to A = 2.

north pole

center of sphere

-2 2 1/2
tans‘_’é:(k _g )

1 +8

] _1)\‘

|as| = [8 -8, |= sec 7
hence,
A= B sec A6
As =
5 LV
and
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tan Ay = (1 X 32 )1/2 (secz AB - 1 )1/2
= (1 - Bg )1/2 tan A6 .

Now, let

28" = %;- A8

]

So that instead of measuring the swept out angle from the top of the curve,
the measurement is taken from the nodal crossing.

d
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Note that for a given geodesic B is related to the minimum colatitude value
min - ¢, then B = tan ¢. ¢ is related

to the inclination of the geodesic curve (remember, the curve is coplanar) by

that geodesic curve will attain. If ¢

i=%-4%
hence,

B =cot i ,

8 = cos 1

(1+82)1/7

and
tan (% - qu’) = cos 1 tan(% - Ae')

cot A@'= cos i cot A8

tan Aﬁ' « cos i = tan 487 .

This is completely consistent with Napier's findings and is sometimes referred
to as the spherical law of tangents.

Although most of the attention has been northern hemisphere oriented, the
solution, by symmetry, is equally valid for southern hemisphere trajectories

‘(= <A < 0). Singularities occur at A = 0 (either north or south pole) and

at A » » at the equator. From a computational point of view, eguatorial, near
equatorial and transequatorial routes (A » =) are inconvenient fo calculate.

Defining the variable x = %-and instead of A » =, let x + 0. For this case,

the formulas become:

0
2 \1/2]
As(x]=a7—tan- [}( 1+22) J <><<%->
17 - B™x
. W2 1/2
P (x) = tan ! B( 1 : > ) .
1 - 87x
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For geodesics which cross the eguator note that tan y = 8 at the eguator. The
geodesics are assumed to be smooth, continuous curves so that'for a given B in
the northern hemisphere, the southern hemisphere continuation of the same
geodesic will have the save value of B in the absolute sense, thus both a
given geodesic curve and its slope are continuous across the equatorial
boundary.

Other singularities of interest are:
limg >~ 0 .

This becomes a transpolar trajectory:

™
6 = - = i¢
60 > on aone side

6 = 60 + %—on the other. {(ie, 8()) becomes a discontinuous step function,

becoming undefined at A = 0, at either pole. Remember A > 8 always).

1im B + », This becomes an equatorial trajectory: ¢ = %u In that » > B

this becomes computationally difficult to handle. The matrix solution removes
this singularity. :

limx - B .

2 1/2
s = 8) = tant g(i__l)

A2 -8
This can be rewritten as

- 2 21\1/2
PO ="-2--—tan1 3(5———§—> .
AT+ 1

Thus, as A » 3,

y(A =8)

H
T

For a typical boundary value problem, given 50, 51, find the geodesic curve

- > > > . i} .
The expression N = Py X Py 18 convenient ta use. In

. . > > > S RN
the case of physical interest, where N = 0, Py = TPy there are an infinite
number of geodesics which will satisfy the condition. (This is not generally

true in the slightly oblate case, as will be seen in IVb(2]}.

. . > >
which contains po, pl.
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(2) Existence and uniqueness of solutions. One can use the idea
of breaking up the surface into small, differential grids, and numerically
find a curve between end points through the patchwork of grids which will
minimize the overall distance; but, in general there is no guarantee that

this curve is unique. Neither for the curve F, nor £  (as defined in the

closest distance planar section). This is most dramatically seen on the
sphere. Although there are an infinite number of cases, only two are cited.

(a) Start point north pole, end point south pole. The minima

curve exists, but is not unique. Take any meridian to the south pole (f
exists, not unigue).

(b) Point p at the north pole, the obhject is to get to the

equator. The intercept curve is any meridian to the equator (f” exists and
satisfies all conditions, but is not unique).

Uniqueness is highly surface and end point dependent. Solutions on the sphere

show a parallel of sorts with the general solutions of a second order dif-
ferential eguation as they should.

Given a point and a slope, the minima curve is uniguely determined. Given end
points, the minima curve may not be unigque and there may exist infinite
solutions.

Looking at the spherical case in more detail, two cases (or subcases of par-
ticular significant physical interest] are identified.

. > . ..
Case 1, given po and ¢*, determine the minima curve parameters.

. > > . .
Case 2, given Py and Py determine the minima curve parameters.

In each case, assume 30 is at 8 = 0. (If not, use relative 6 coordinates.

Remember, the surface is one of revolution and symmetry can be used.)
And in each case it is most convenient to work with the solution planar normal

N, which in case 2 is easily determined via R = x

3
0 1

Now, consider the relation of R with P

*», a topocentrically defined heading angle (0 < ¢ < 360).
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Pa
Z
v
A\
X
Z
/ﬁ N
P
O, .
L y
> A~ ~

No=0i - 2 . A
N Dlx Cos wly + s1n wlz

z, y a topocentric system on the surface.
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l
)

™|

— + ”~
NOTE: sin B = N » iK

Rotate the normal up to the point 30 (at ¢0) this is a y axis rotation through

an angle L. ¢O so that

2
sin @0 0 ~-C0os ¢O 0
>
N =20 1 0 - cos Y
cos ¢0 0 sin ¢0 : sin ¥

- Cos ¢O sin ¢
N
N(¢,) =| - cos ¥ ,
sin ¢0 sin ¢
which must then be rotated (-8) about the z axis for proper inertizsl (I,J,K)
orientation (8 is defined here as the longitudeoo¥ 5.
This eguation relates the two cases, as given N, which is equal to 30 X 5,
and ?orcing+!N| =1 , then ¢ at ¢0 is determined via the above relation,
> >
and given Py Y then N is obtained (remember to keep track of 8, which was

assumed to be zero).
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Now the angle g is easily determined via sin B = R {k for either case
. ; %
(reference illustration)*.

NOTE: 60 the spherical/sphere case parameter is obtained from gnode =Rk xR,
> 2
from which (depending on quadrant) eo = %-+ tannl ° - { . By geometry
e i

gnode points along the equator to where the plane deFined‘hy ﬁ intersects the

sphere equatorial plane.

The angle B is related to the spherical/sphere case parameter 8 via 8 =

tan 8.

Given a curve (8., B) and some arbitrary point Sa, determine if the closest

O)

point on the curve to point Sa can be found.

From,

tan ¢ =8 sec (6 - 90)

obhtain the curve in the cartesian form

ax + by + cz = {

Now, note if

ax_ + hy +cz_ =20
a a a

then ﬁa is on the curve. If this is so, stop the process. If not, continue.

*Require |N| = 1.
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et N[ =1 , [P | =1+

construct K, E such that

A.B=0
E+8-8
L
A

So:

A= P - WIR
é:ﬁa-ﬁ.

then let

B] = 1

and from this @ the solution is extracted.

a X
a
* O >
where N = b =
? pa Ya
c z
a
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NOTE: If ﬁa is in the direction of m, B = 0, there is no unique solution.

Also if Ea -t = a, R=o0, B = ﬁa’ the point is on the curve (this is an

aprlication of Gram-Schmidt orthogonalization).

(3) Solution via matrix methods.

(a) Development. In that, if B(t) is the position vector of

the solution of the spherical case (say the general éase, where P(¥) is a
vector function of time measured from the origin) it is easily shown that
for a geodesic:

1. P(t) » P(t) = a2, a constant for any time.

2. There exists a vector N such that N . 5(t) = 0, for

all t.

The two results indicate a solution obtainable in terms of vector matricies.
Consider the following diagram.
z{(z")
N

solution curve/a plane

Lets say N is known in the x, y, z systems and |N] = 1
IO

N+ k =cos B

> ~

> -
-N x k =98 {which points in the direction of x ).

Now
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y
y' X’(e)
a
X
Let 8§ have components al + bj
hence
o = tan_l (-b->
a
-1/ & . ]
= tan r (all quadrants resolved).
e 1

— * .
The known vector N contains the two necessary components needed to exactly
specify the curve (of minimum distance).

Fram B(£) » P(t) = constant assume a solution in the N + X plane of the form:
cos ¥

B(t) =| sin ¥
g

where, if the minimum distance trajectory is one of constant angular velocity,

P =uwt +8, S an offset angle. ¥ the internal swept out angle. This vector
referenced to the x , v , z system (a rotation of 8 about the x axis) is:

1 0 0 cos Y
ﬁ'(t) = 0 cos B -s5in B sin ¥
0 sin B cos B 0

and finally referenced to the x, y, z system.
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Let a, B be the rotation angles which take P in the B8 = 0 plane, to B the
actual position vector.

Now,
cos a -sina O 1 0 0
B =| sina ~cosa O 0 cos B =-sinB (%)
0 0 1 0 sin B cos B
Cos o -sin a cos B sin o sin B8 COoSs @
Aﬁ =| sin a cos @« cos B -sin B cos a sin ¢
0 sin 8 cos B 0
cos a -sin o cos B sin a sin B 0
R = sin a cos o cos B -sin B cos a 0
0 sin B cos B d
E = (cos @ cos § - sin a cos B sin ¥)1 + (sin a cos ¢ + cos a cos B sin P) 3
+ (sin B sin ¥)K
and

=l = (sin a sin 8)1 - (sin B8 cos &) + (cos B)k .

£ N is given (from boundary or initial conditions) a, B are easily deter-
mined.

The objective now is to show:
dp ¢
EHNX%'

NOTE:  [B] =1, [N x B| =1, since || =1, |F] =1, 8« 0 =o0.

In order fto keep
LI
iet,

sin ¢ > cos ¥
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- . -

and

cos 5 + - sin Y
for the case of taking unit derivatives.

Then,

-cos & sin ¥ - sin a cos B cos Y

dP . _

cos o cos B cos ¥ - sin a sin ¢

T
sin B cos ¥
for N x P
i 3 k
N0 Nl NZ
P0 Pl PZ

With:

N0 = gin a sin B

N1 = -cos a sin B

N2 = cos B

PO = cos a cos ¥ - sin a cos B sin ¥
P, = sina cos ) + cos a cos B sin ¥
P2 = sin B sin ¢

Evaluating each component
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R x E) « i = -cos a sin B(sin B sin ¥) - cos B(sin a cos ¥

+ cos & cos B sin V)

. 2 .- . = 2 .-
= -3in"B cos & sin ¢ - cos B sin @ cos ¢ - cos a cos B sin ¥
= -cos B sin a cos @ - cos a sin ¢ .
> > ~ = . .= . . 2 .-
(N x p)» j=cos Blcos @ cos ¢ - sin o cos B sin ) - sin a sin B sin ¥

i . 2. . - . ,2 . -
= cos B cos o cos Y - sin & cos B sin ¢ - sin a sin B sin ¢

= cos B cos a cos Y - sin a sin b .

(N x p) - k = sin o sin B(sin @ cos ¥ + cos a cos B sin v)

+ cos o sin B(cos a cos § - sin a cos B sin )

. 2 . - . . . -
= 5in” o sin B cos ¥ + sin a cos o sin B cos. B sin Y

2 . . . .
+ cos” a sin B cos ¢ - cos a sin o sin B cos B sin ¥

= gin B cos ¥

hence,

P

_— = P .

e N x (as expected)

dﬁ o > Y &
-d? = VC x Vs .

Since N = %c and the surface gradient for a sphere VS = 5, what has been
shown is that

dp

i B which is what would be intuitively expected.

Continuing with,

Cos o -sin o 0 1 0 0 cos @
B(t) =| sina cos o 0 0 cos B sin B sin P
0 0 1 0 sin B cos B 0
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Finally, the term 8, t = 0 needs toc be evaluated.

Lets say the term $(0) is known

then,
cos o -sin a 8] 1 0 0 cos §
B@) = | sina cos a O 0 cos B -sin B8 sin §
0 0 1 . 0 sin B cos B 8 8

from which § is easily solved.

NOTE: For the argument 6 may be ¥ = w(t) + 8 or ¢ = w(t) - &.

The t determination can always be made from the fact that,

[
cos § = -;Q~————

AT
sin § = lfg_ffﬁl

AT

Direct trajectory can be defined for w and retrograde frajectory for -w as
usual.

Now, look for heading information for Be).

Given P(t) and with known factors {s, 6} or {1atitude, longitude}_data

dsét] can be found. Then with the {latitude, longitude} data rotate this
>
vector g%~ into the topocentric SEZ systam (the 7 component of Qg must 20 o

zero in this system) and obtain:
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| -
| = — — —53F
d
w t
E
S
dP- s
T S =cos ¢
& . .
I E = sin ¥ .

tan ¢ = Eﬁi $ £ = fo_:_ji;_
_ gE_. a -dp . i
8 is the position vector in the topocentric system, related 5 via
sin L. 0 -cos L cos 6 sin 6 0
By =| o 1 0 -sin & cos & O Ply) .
cos L O sin L 0 0 0
cos L cos 8
NOTE: L and 8 are obtained from P(t) as P(t) =| cos L sin 8 |.
sin L
Let,

P = sin ¢ cos 81 + sin ¢ sin 6j + cos ¢k

and, noting ¢ + L = (L, the latitude variable)

N =
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so that
cos ¢ cos 6 cos ¢ sin © -sin ¢ sin ¢ cos ©
ﬁi = -sin © cos O 0 sin ¢ sin 8
sin ¢ cos © sin ¢ sin © cos ¢ cos ¢
0
B. =l 0 |=k .
i
1

This is exactly as it should be since 51 = Kk as seen in the local topocentric

system. Letting M be the topocentric rotation matrix,

B, =nmbP

1 0
Now,
sin ¢ cos 6 cos a cos ¥ - sin o cos B sin ¢
> R . . - : i
PO = sin ¢ sin © = sin a cos ¢ + cos a cos B sin Y
cos ¢ sin 8 sin ¥ -

¢)8 a’B,-\:‘}

(this ra%a}es ¢, 9 to a, B, @. P is the internal swept out angle).

For the heading vector development at the point 5, let ﬁr = M H. ﬁr is then
the heading vector in the topocentric system.

1 to the surface.

Y, the heading angle as measured in the local topocentric plane can be obtained
as usual,

(note the negative sign.)

Iv
.
e G
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(b} Summary of matrix solution for the spherical case.

Let P be the position vector:
sin ¢ cos ©

P=a sin ¢ sin 8 .
cos ¢

From the surface constraint

0O
@]
w
< i

be the vector measured in the N » ¥ =0 plane (central angle,

—
©
cr
[¢7]
e
3

<

@, measured from the equatorial node). Then 60, 8 initial/boundary parameters

can be translated to a, Y angle constraints such that

cos o -sin a cos Y sin a sin Y cos P
P = sin a COsS o cOs Y -cos o sin Y sin @
0 sin Yy cos Y 0

60, B determine N and,
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N = sin o sin Yi - cos @ sin vj + cos vk

Y can be written:

P(t) =9+ %-At (for constant velocity trajectory).

0
cos a -sin o cos Y sin @ sin v
> EP >
H={ sina Cos & cos Y  -cos @ sin Y T (H, the directional vector).
0 sin Y cos Y

@0 can be determined as

N
cas @0 = EQ—ngiiijgz if Iﬁ 1.

% x| ol =

NOTE: All development was based on the solution to second order differential
equations.

The sphere was treated with both condition types, ie,

Case 1:
DE: Sphere
BC: P(t =0) = ﬁo , Bt = 1) = 51 (boundary value problem).
Case 2:
0OF Sphere
>

> _ - B dP _ _ ) C s o

IC: P(t =0) = 0 EE'(t = 0) = tan ¢ (initial condition problem).

. . . e
In both cases, it was convenient to find N, the planar normal.
Both cases have physical interest since case 1 is the classical navigation
problem, case 2 can be thought as: given the position and direction of an
enemy aircraft, where is it going, what will it most likely attack, minima
curve assumed.

In the second case, an uncertainty in ¥ (ie, surface directional heading,
where ¥ = ¢y + AE) will generate a solution envelope.

The solution envelope is easily generated if 50 is rotated to the north pole.
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AE

The solution obtained is a surface envelope (op sectoral slice) which can be
useful in determining probable targets.

(4) Selected problems.

(a) Intersection of minima distance curves. In the plane, the
following expressions can be written for the two minima trajectories:

y = ax + b

The objective is to find the minima trajectories when

y =y
X = X
hence,

ax + b = cx + d

(a -c)x=d-b

therefore,
_ .~ _d-0b
X = X = —— (a # c)

<
1
g
AY
n
QL
N
oo
1]
oo
~—
+
(mp
H
0
N
g =
[RR
0T
N~
+
a.

- 1
y ==<a po— )(ad - ab + ab - cd) = (ad - cb)

= (a 1[:>(cd - cb +da - cd) = 3 1 = (ad - cb) (results are consistent]).

<
I
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NOTE: If a = c there is: no solution if b # d; no unique solution if b = d.

Now, no unique solution implies a = ¢ and b = d, ie, the trajectories are on
the same curve.

No solution implies y and y’ are nonintersecting parallel lines.
On the sphere there exists similar cases.

Let
> >
N e x =0 (one curve).

. ; = 0 (another curve).

The vector which points to the intersection of the curves is easily seen to
be: ' '

NOTE: The intersection vector I must reside in the plane ﬁ, hence:

T.%=0 , but T must also reside in N so

T.% =0 , 50 that T is orthogonal to both N, N~ therefore

T« xX, nowsince ITI =a (ifT#0), Tcan beset equal to N x N, then
let, [T| = 1. T now points to the latitude/longitude of the intersection/

intersections (remember there are two, T and -1).
T =0 xRN (since I must be a vector in both planes).

T is unigue if and only if
fix & 20

£ N x N = 0, then either No= N or N = -N~ which is similar to case 2 in
the plane, no unigue solution.*

There is no analog to planar case 1 (no solution) on the sphere.

(b) Trajectory/intercept. In Cartesian R® let the invader
parameters be,

>
ﬁ“ﬂ=%+%t,

and the interceptor parameters be

*The trajectories are on the same planar/sphere intersection curve.
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>
El(t) = ﬁl + Ut

where vl, Vb are assumed constants.
Then at some time (t = T) it is reguired that

> >
PO(T) = PI(T) .

The object is to solve for the components of Vl, given ﬁo, ﬁl and VO.

Let,

By = %07 Yo %
P - N A

V. o=v Vo,V

0 x0” “y0 z0

Vyl ’ Vzl

]V2 Y | = V%, and it is assumed |V, | known ).
zl 1 1

isolating the Vl terms:

<
n

1
X1 r’<xo Tt VT

<Z
|

1
yl_-l'—(yo "y1+vyor)

v =Tl(zo-zl+vzlr) (16)
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hence we have a quadratic eguation in T
2 2 2
Vﬁ’ = (g =X * VT ) +<y0—y1+vy0T) +(2(1'21“\/zot)2
V%Tzz(xo"X1>2"(yo'yl)z“(zo'zl)z*\/érz‘”z(xo‘Xl)onT
*2(yy "y ) Vi * 2 (75 =7 ) Vgt
(V- )% = By =B 12 v 2(By - B ) gt

) 2 2 . .
or, assuming <'v1 > VO) this can be rewritten as:

at® - 2t - c =0

(2 -2)

b=<$o T51) ’ \70
c = lﬁo - ¢1|2

which has solutions:

1 2 1/2
cog p(ef )
Assume T > 0, so the solution is physically real, thereforgm

_ _ -1 I .+ S LY 2
T'(ﬁ Vﬁ) [(Po 1) V0+D<Po L) Yl

5 _ 2(2_\2 ]1/2

R R A s )
The components for V, are found via substituting T into eguation (16).
Thus, the values of both Vl and T, the time of intercept are obtained.

Now if (Vi < Vé ), a physically real solution can only exist

. ; - )
i#( By =Py - Uy <0
For example, let

Voo A

1 0
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then ,

: 2
Iﬁ - P ] > >
T = 0 1 (since |P, - P |2
0 1

—2('%0 - ﬁl ).

> 0, then for a solution to exist

0
+
(?50—751)-VO<D .
) 2 2
(The case of V0 >>Vl , the discriminant must be real for a solution to exist.)

(¢) Curve of pursuit.

NOTE: Although this section works the curve of pursuit problem, the intercep-
tion problem on a sphere is also addressed here. This is because the solution
technique is the same (or very similar) for both problems.

,.(§19 ?1)

Now, »
dy 5 ~ Y
dx .= X
1
ie, let

\ = \
yp = e P VB

1 10 X
and let

y/ =V cos 8
ox 0

v =V, sin ©
oy 0

then set a parametric relation for x(t), y(t).
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y(t) =l%lv
%(t) = XXy

r
where:

RN C IV L L Y b

V = |V]|, the velocity (assumed constant) of the interceptor.

The idea is the instantaneous slope (or direction) of the interceptor points

along the line (curve of minimum distance) which includes both interceptor and
target instantaneous positions. As with most differential equations of this

type exact solutions depend on [X(t), §(t)] the target instantaneous position

“and the initial conditions.

On the sphere, N refers to the target and N to the interceptor. As B of the

target changes, iterate on P and N of the interceptor. It is convenient

(for N = constant target on a minima course) to use the matrix concepts
developed earlier. Treat this case analgous to target

The instantaneous ﬁ is always P x 5. This is used as the motion in At is
divided up.

Say for example the given terms are: 56, P, (]Vf,lV[), N, ﬁo =P xP_, then

calculate:

N 1] . o3 .
=Mi{ sin (6§ + =! At [remember M = M(N); M, related to the a, B matrix,

a

N’

0

reference IVb(3)(a)2].
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and
cos (5 + ly-l)At
/ a
ﬁl =M] sin{é % I-\a/-l>At
0
M= M)

then recalculate &,

. > . -
Since N is constant, M is constant and

cos (6 + N |2J At)
a
I

sin <6 +n IXJ At)
n a

0

Oyl
1

=

Now, since N changes for each At cycle, M(ﬁ) changes and for a given cycle
(call it M)

fo=B xP
m m m
M o= M)
m m

I+

[M.I At)
a
V] At)
a

cos (6
m

=M sin (5
m m

Oy
1+

m+1

o

and continue the cycle.

As in the planar case, the spherical case is easily generalized to 50 = 5(nAt]

for P a general curve.
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NOTE: The B terms are P (6 ks I%J At ). The £ can be resolved by reguiring

> 3
P1 P1
towards the target.

>P o P - - the int tor al int
0 ODI" m+1 m+1 m m » SO e in BPCBD Draways po1Nnts

(Assuming [V| > |V]).

(d) The spherical interceptor problem.

Given 50, NO (and VO) and ﬁl (and Vl) find ﬁl, the intercept path.

Let ﬁI be the point of interception.

For the two vectors A and B and a unitary matrix M

ReB=MA+ B (since only the relative orientation is changed).

cos wI

sin wI

0

sing? ﬂﬁ, the o, B matrix defined so as to make

0

=1 ~o_
(M _'.50 o = O.]

< ;
:

N not proportional to P« gl has been implicity assumed. The

0

assumption should be apriori checked by —(—%—-=L # =,
[P x P

65




1 March 1988 o ' TECHNICAL NOTE
Hence
cas ¢I
M = s
PI = sin wI
0
cos 6
M_IEO = sin ¢ {8 known).
0

Continue with

cos (8 + wt)

- v
M IEO(TJ = { sin (8§ + wT) (w =-EQ> ]
0
a’
(T ey (fixed)*.

-

c

Then find Tt such that:

ﬁ” V
M—IPO(T] . 1PO[D) = COS EE-T (target equation)
and

V
M~l§1 .« 1 lPO[T] = COs gl-r (interceptor equation).

cos ¢
-1 . . . . . . .
M ﬁO(DJ is defined as | sin § , sa the first equation is always true.
0

The second equation becomes

> >
*P0 the target vector Pl’ the interceptor vector.
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- V - v V
a8 Ccos (6 +-a—0—‘r) + b sin (6 +.'-a_0—'r> = cos (TE]—LT>'

Now since (for physical solutions) T > 0, the x = f(x) type iteration solution
can be used:

T=va-cosll£a cos<6+—0—‘r>+b sin(6+—0—T>J ’
1 a °

starting with T = 0 and continuing until some convergence criteria is met.

Then with 1 solved,

TSO(TJ =b_ .

I

With the point of interception found (31 known )the interceptor can be

navigated to the target on the R = ﬁl X ﬁI plane.
(5) Directional range and location problem.

Given ﬁo, s, ¥ find ﬁlz (eg, let PO he a radio beacon at a known location.

. . . > . . . . 2
Given a radioc receiver at Pl which can determine it’s distance, s, from ﬁq

b

> . ) . 5N
and the direction (¥) to PO , where is the receiver located, determine 7..]

ﬁo has coordinates ¢0, 8 and 31 has coordinates ¢1, 0. ; ¢0, 60, Y and s are

0’

1
known.
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Now
sin ¥ _ sin A8
s1in ¢ sin s
0
so that
6. =0+ sin_l sin s sin ¥ (6 determined)
1 0 sin ¢0 1 y

NOTE: Quadrant relationship ¢ to AO positive.
Also:

COS S = COS ¢0 cos ¢l + sin ¢0 sin ¢1 cos A

caos ¢0 = COs ¢l cos s + sin ¢1 sin s cos ¥
cos s - cos ¢, cos ¢
sin ¢, = 0 L
1 sin ¢O cos AB
sin s cos ¥
Cos = COS S COS + - COS s - COs cos
¢0 ¢1 ( sin ¢, cos A8 ) ( ¢0 ¢1)
sin s cos ¥ 3in s cos Y cos ;Q>
cos ®. - COS S - = Ccos ¢ 208 § - -
"0 ( sin ¢, cos A6> ¢l< sin $, cos A8 )

cos ¢ sin ¢, cos A8 - cos s sin s cos Y
0 0 -

CoS = - - determined ).
¢l cos s sin ¢0 cos A6 - cos ¢0 sin s cos ( ¢1 )

<

sin 2¢0 cos AB - sin 2Zs cos ¥

cos = .
@1 2 COs s sin ¢0 cos A - cot ¢0 tan s cos ¢

NOTE: On an oblate planet, if it can be assumed the locator beacon travels
the minimum distance route, finding 51, given ﬁo, P, s is an iterative

process. Start with the sphere relations and iterate using oblate geodesic
curve relations. Solution is unique as long as 50 is not a pole (north or

south).

cos s sin ¢0 cos A8 # cos ¢O sin s cos ¢
but if ¢0 = 0 then cos ¢1 = cos s, A® undeterminable.

(6} Given range, calculate location problem.
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(a) On a plane.

Given ﬁl’ ﬁz, s, [, |s,| locate P.
7 S
Pl l 11 R
PO
) S, |
Let
x
N 0
Py =
Yo
X,
N i
P. =
i
Y4

and assume ﬁo, ﬁi unique, so that

2
S

(% 'Xo)z * (v 'yo)z
(% ‘xo)z * (yz'yo)z

there may be two solutions, one solution or no solutions).

—

2 . .
S, Two equations in two unknowns (note,

Now
2 271/2
= + - _
0 T % [82 (v, 0)_]
so that

2 271/2 2 231/2
1T % =i[82'(y2'yo>] il}l"(ﬁ"yo)]
and solve for y, (then for xo) .

(b) On a sphere.
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Let

5 - P = known

"
a

o
T¥
1

I
a

known

known = 1

o
it

hence, assuming [ﬁil = 1

P, P given, solve for P =1y
1 2 0

X y z /- z 1 (x, y, z easily solved for).

(7) Triangulation praoblem. Given ﬁo, 51, wo anri wl find T, the

point of interception.
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(a) On a plane.

Trivial:

- _ -l gl
¢l = tan T 3%
Let
.1._. = fan iy
a wan vy

[N

-where

R
1]
jal]
X
+

1 bl ( Pll ) *

71
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ggx * bo = apx + bl

and
_ by 7 hy
X = 2 - ( provided a; # al)
y = agx + by o= ax+ b, (either relation).
Hence
X
>
I solved for: - .
y

(b) 0On a sphere.

Also trivial, look:

As previously done [reference IVb(2)(b)] 51, 13 generates ﬁi and T is gener-
ated as:

then setting |T| = 1 obtain {9, directly. Always make sure the guadrant
>

8}
is correct as NO X l\ll points to % 1.

c. Application to the slightly oblate spheroid. First order perturbation
techniques are used throughout.

(1) Surface modeling. The zero order approximation is that of a

sphere.

2 2 2 2
x- +y +Z =a orp=a .
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y cross section view

Working with the cross section: % y2 = az.

For the first order planetary shape approximation, the assumption is made that
the surface normal points roughly in the direction of the acceleration vector.

(a) Nonrotating surface.

N=V(X2+y2—az),

e »
g A
m = ﬁz-(xi + yj ) , R a scaler constant.

Also,

tan ¢ = - =— =

or, the y acceleration component divided by the x component.
{(b) For a rotating surface. The x component is reduced by an

amount -w x due to centrifugal acceleration. If the resulting surface is
still to remain approximately normal to the acceleration vector, then
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gr
_dx R Y
y <gr 2)
ROY X
yielding
2
2
('l-e)x2+y2=b2 2 _wR
gr‘

which is of the form of an oblate spheroid.

Now, for a solid body

<
0<g<egg
since g = g(r) (assume symmetric, isotropic body).
LoA4AnG - - . . . .
glr) = =5 or p = average density (assume symmetric, isotropic bodyl.

As a first guess (and trying to strike a compromise between a solid body and a

thin surface) let g(r) = %—gR* the arithmetic average of g(r) on r, from

0 < r € R, R the approximate radius of the spheroid volume.
Then substituting back:

2
2
< e >§3w .

21 Go

For the earth

-9 ) .
w2 5,3175°10 lradlans/second]z

11

G = 6.673 107 N m¥/kg’

p = 5.522 gcm-3
yielding

2
< e >z 0,00688 .

The plumb line is deflected as follows:

R
*The same value is obtained via < gn > =-% jﬂ g{r) dr.
0
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=8, = resultant acceleration

and

sin € _sin ¢

w?R cos ¢ &R

| hence6

‘ 2 2 .

| e ~ % gin 2 R .wRsin 26
| 2 &R 28R

- . . . 2 . . .7
For an alternative derivation of < e&” > , dimensional analysis’ can bz usad,

Frem the Buckingham pil theorum choose the following pi:

T, o= e eccentricity (a pure number).

m, =w, angular/rotation velocity.

T, =0, density.

my = G, gravitational constant (although a constant, watch!!).

Start as follows:

F oo Gum

RZ

6Fowles, Analytical Mechanics, P. 130.

7Hughes, Schaum’s QOutline, Fluid Mechanics, Chapter 5.
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a=wR-= E%
R

(.U2 = G<P-—3—) = Gp .
R

Assume w in the numerator (this seems feasable as w+, et) then going back to
the pi theorum:

2 \n
w
E-k(*g;) .
NOTE: This also assumes n > 0.

If n= is chosen, then the value for k is

1
2

3 1/2 )
K hooratical ~ <§E‘> = 0.50009 (< e, > = 0.08301).

Kootugy = 0-68253 (< e, > 20.081982 ) .
. . . kt - ka
Thus giving a percent differential for Xk, (100 . ___T;:__> 2 1.22%!1
(2) ©Oblate spheroid. Accarding £o 1975 cre® for the earth.
a = 63/8.388 km
b = 6356.912 km
yielding
e® = 0.00872

NOTE: These sections are not meant to serve as a rigorous derivation for e,
the planetary eccentricity value, but more as a heuristic demonstration on how
to arrive at an approximate value.

Consider the surface model to be a slightly oblate spheroid with eccentricity

e <1, 92 << 1. In the analysis consider only terms up to and including ez.
All other terms shall be discarded as being vanishingly small. Continue with:

2 2

L+ 2 - (letting r = p sin ¢ and z = p cos ¢J.
2 2
a b
. 2 2
sin ¢ ,cos_ ¢ _ 1
2 2 2
a b p

8 Consolidated Rubber Company (CRC Handbook of Mathematical Tables, 1875).
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2 2 2 2 2 2 -1
a b ( b2 sin. ¢ + a cos ¢ )

2
z bz(Ez-sin2 ¢ + Cos2 ¢) -1
a

2

0’ b21-1~—b—2—sin2¢"l
a

- 2 2 -1/2

p=0b (1 - e sin ¢ ) .

2
Now, assume e << 1,
2
p 2D <1 + %—-sinz ¢)

and

©
"

n
2

dp(” o 4

3 order of e

set
do |2 de _ dp d¢
‘EX1 ~ 0 <%1nce E HE'dA) .

Continue with

TECHNICAL NOTE

2 2 211/2
5 2 ,[g <1 + §—-sin2 ¢> [(%%-) + sin2<b<%§-> } dA

As in the case of the sphere let

1

¢ = tan = A
d __1
dA 4+ A2
2
sin? b = A ,
1+ A
SO
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3 .

Bg’

so that:

2.2
1o B ‘ 1
[ 2(1+>‘2>J

1

(-

letting

ezkz

¢ =cf1+—Fr
( 2 (1«2

2.2
e

. 22 )2

5)

- - - -2
Aug 2 - 2 - ZAZ (1 . AZ) o
h -2 2 2 2 )\2
A g =Cc -C& ’
1 + A
4 -2 2
(1 + ce JAg  =cC

78
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g” CZ
5 2 1/2 2,2 )
Aﬁfi - {] g 5(i]< - -——fi———jz ) (again expanding on e’).
B2 ] 2 (1 +2%)

NOTE: The second (82) term acts like a perturbing term which always detracts
from the great circle route.

Now, assuming the positive solution:

2

g’ _ 1 _ e A
A(k_?___-q)uz 2(1+>‘2)<1\i_1>1/2
82 8
2
g(d) = sec ! %—— %— q) (q(X) a perturbing term).

q(A) =j(1 . 22) (ij; 1)1/2 :
2

3
Let
b= 1+ Al
du = 2AdA
)\szu—'l
2
AE-= J;—(u - 1)
B 8
Q(X)=B—f——'d—u——l7'2— (OI.='1+32
2 Julu - a)
_ _ 1/2
qA) = %- 2 7 tan 1<117;11>

B -1
)= ey (—1 B
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. 2,2 \1/2
g) = eO * {SBC 1<%) (__—T/_— tan "t ( l—'——g—' > } (A > 8).
+ B

1+ 8
2 2
- 1 e A
NOTE: g 12 1/2 (1 ‘2__""'2‘> .
A( Ao > 1A

u

52

So for the first three equations:

2 2
p =D 1+_§_ )\ 2
1+ A
¢ = tan 1—1 A
g =

2 2 2\1/2
-1 A e B -1 AT -8B
8. = sec | = - =— tan - | —m— (A > B).
0 { 8 2(1+82)1/2 <1+82> } |

For the sphere the nodal crossings:

= +
e(1im A > ®) 60

N =
.

For the slightly perturbed spheroid

o2 2 .
2 € +32>1/2

The new curve is slightly crunched up, presumably to avoid the eguatorial
budge.

6(lim A > o) 70

=

The distance equation becomes:

bv/' L2 1 Lo 2 ( g2
122 (1 2% )% 1«22 (K7 - %)
2 1/2
(1 - e2 A 2))1 dA
1+ A7/
2 2 2\.2 2 1/2
b 12<1+ Az ]}+L121_Lzl£3“(1_82 X2) aA
1+ A 1+ A AT -8 1+ A
1 1 g2 A
b 2 12 21/21+—2_ 2
1 +a2 (12 - %) 1+ A

. E\z S g2 4 g% 4 gh2 - B2)\282]1/2 4

0]
in
I\]IL‘D

o
HH
MI [u]

wn
"
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2 2

A dA e A 2 2 2\1/2

s =b . 1 + (1 +B - e B )
f1+k2 (AZ-BZ)I_&( 2 1+x2)

2

s=b(1+(1_82)32)1/2j(1+;_ A AdA

2
1+ A2 ) (1 +22)(a2 - g2 )V/2

let,

b'=b(1+(1—ez)82)1/2

e AdA +b»32_f Vo Ad
A f(1+>\2)(>\2—62>1/2 2 1+ 22 <1+A2>(>\2*Bz)1/2

The first integral solves as

. ’ tan_l<A2 _ 82>1/2
(1+82)1/2 1+ g2

For the second integral

Hjm_af_f o AdA
2 122 (1 +>\2)(>\2-82)1/2

=b
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Combining terms yields:

bs = b; 172 tan-l(xz-g2>l/2<1+_§_2__ < 2>
(1 +8%) 1+ 8 4(1+8%)

B2 .()\2 _ 82)1/2 A
4(1 +62)1/2 1 +>\2

o =b (1 (1-8)e2 )2,

Now
. 2 1/2
b =hl1 - 92 8
2) 1/2 2

so that (up to o terms)

2 2 2 2 2 2\1/2
As=b(1--§—- 8 ) 1+§—-——-——e—-—— tan_1<—>3———_—8—— ‘l
1+ 82 a(1+8%) 1+ g? |

o2 (Az_sz)l/z}
a(1+g?)t/2 1+ 27

This can be reduced to:

2 2 21\1/2 2
bs = b {1+ —2 tan'1<_—.—-—>‘ - 8 - 2
{( 4(1+32)> 1+ g2 a( 1+ g2 )2

(a2 - 52) 1/2}l>\l

(1+8

2
1T+ A A
0

Now turn to the task of finding (A) in order to obtain instantaneous heading
information. '

With,

p(A)

I
o
—
—
+
N @©
N
—_
+ >
N
>
N
\-/

p(A) = tan = A

o (x)

"
@D
+
4]
©
O
|
—
™| >
[
N} ©
[
~
—
+
w0
N ™
~—r
—
N
N
ct
[0}]
3
1
—
—_—T——
N
[}
N[
N
\_/
—
~
N
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4 _dp 3 d$ 2 : de =
D(A) = a%-lp * P gk by P osin ¢ ax g -

Eventually the ratio of two components must be evaluated. The vector g is

divided through by p and expanded (up to ez only):

D) = 92_..__}‘—— ; I I ;_ - 1
(1+>\z)2 P 1+)‘2 ¢ (1+>\2)1/2(f__1>1/2

2
2 2
1-2.. 2 i
R

8
Since terms up to 82 must be retained, note that the {p term does not vanish.

A look at the geometry shows immediately what must be done next.

2~

i
Y

D

NOTE: 1, does not point along the surface, but into the surface.

¢

Next; a vector D (A) is needed, this vector is normally measured on

Lo o FaE] —
TR sur

face (ie, D) » i; = 0). What is needed is a rotation ahout the fe axis,
the angle is determined by setting 0. 10 =0, so:
1
1T+ A

cos & sin & O >

5,(k) ={-sin & cos & 0 ezk (1 + Az >_2
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First set:
2
I 1 e A

0 = 81n€<——-——-—2)+ cos E(———-—————-——-—z)2>

1+ A (1 + A

EZA -1, 2
tan & = — (0 <A <o , &< tan (e°) , & bounded and small).
1T+ A
ezk
Now, since & is very small, let cos & ~ 1, sin & ~ tan & ~—
1+ A
2 2 ~
5o = A , _EA g A . 1 . B
‘ 122 1422 (1+>\2)1/2 $ (1+Az>1fz (XZ_BZ)le

~
-

( ez XZ i
1 1 - — ig
2 1+ A
e A

il (S B § ?
A) 2 ———s1i, + 1 - 5 i
;22 0 (1+A2)1/2(A2—82)1/2< -2 1+Az>e

Y

(eliminating o terms).

It would appear from this analysis that justification exists for keeping the

old B(A) and just dropping the heading ip term.

Now consider the heading angle ¢. As usual, the work is performed in guadrant
I.
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(3) Slightly oblate spheroid solutions.

2,2
o(A) = b 1+§.—————7>

1 + A
$(0) = tan"! 3

2 2 2\1/2

-1/ e B -1/ X -8

9(A) =8_ % !sec (—-> - tan - )
0 B8 2<1+82)1/§ <1+82

Al

2 2\ 1/ /2
As{A) = b tan_l( l——:—é—-> 2(1 + 92 2 ) - 92 7N (AZ ; BZ ) '
1 + g2 a(1+8%)) a(1+8?%) A2+

_ 2 2 2 1/2
W(AJ=tan1H1-%— A 2)3(%—1—“—2) J (A > 8).
1+ A AS -8

The most dramatic difference between spherical and oblate spheroid geocdesics

can be seen by comparing equator to equator trajectories in the oblate tran-
sition region.

)

Consider (northern hemisphere reference only)

pole
A =1

equator

P~ = (1 _123_3),/&

2
For equator to equator trajectories where A8 < 1 (1 -

r-\J’ ©

)the spherical

geodesic is the same as the oblate geodesic.
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2
For equator to equator trajectories where m > AB > T <1 - %?—) , the spherical

geodesic remains along the equator, whereas the aoblate geodesic takes a route

similar to that of the dotted line [actually there are two geodesic routes
(north and south) by surface symmetry about the equatorl].

For equator to equator trajectories with A8 = 1 there are an inifinite number
of spherical geodesics, there are only two oblate geodesic routes {one over

each pole). In general, when 50 = —3 for the spherical case there are

l ’
infinite geodesics, on the oblate surface there may he only two geodesics
(aver the poles).

Thus, another effect of aoblateness is to remove the singularity in the aumber
of geodesics which can occur (exception: for the oblate case there is at
least one pair of points which produce infinite geodesics, north pole to south

pole).

(4) Comparison of FROST to integrated great circle route. Spherical

minima routing gave a relation between ¢ and 6, such that the route was
confined to a plane. If this route is integrated on the slightly oblate

spheroid, the following equations are obtained:

2 )\2
o(A) =b |1+ E.._____72>
2 1+ A
\:)ka = Laﬂ—l A\
. -1 A
B(A) = 90 + gsec 7
Then,
2 2 2
B e A L A
As = b 1“'—2— > (8 5 5 1
T 1+ %)
1 1/2
dA

~ . a2} 1/2 AdA
ss = o(1 - 87) f(1+>\2>(>\2-62 )1/2+2_'
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2 1/2
lp* = tan-l B<.>\__.+_.1—) / .

2 g2

Referring to the geodesy example in Appendix I (New York-Leningrad), the
integrated great circle parameters are:

g = 0.46113733 .

A
a

1.130294 .

A

b 0.577350 .

The appropriate level of significance is ~ e'.
The FROST distance measurement gave AS = §735.37 km.
The integrated great circle measurement gives AS = 5735.37 km.

This result is not surprising if the difference between the two routes is
cansidered: ‘

Aol WML,

Leningrad

integrated great circle

/ﬁew York

In both cases the value of B gives the minimum colatitude the route will take.
For FROST ¢_. = 24.7378°. For integrated great circle ¢ . = 24.7562°,

The difference between the two comes out to be approximatsly 1.1 nautical
miles. '

*Up to e? only.
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Does this result challenge the validity of FROST? No, rather it certifies it.
This particular example has starting and ending points far north of the
equatorial bulge (the whole route is far from the equator). It is in cases
like this, where the values of A and B are relatively small that one would
expect differences between the two routes to be vanishingly small. 0On the
other hand, routes predominantly close to the eguator should show greater
distance and routing deviation (consider two points on the equator 179.8°
apart in longitude).

'/‘ > o 77’/
# ¢ < g 2,

NN N e e

P

K. Carlton-Wippern, PhO.
Mathematician
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APPENDIX I

10.0 PROJECT FROST

10.1 The need for geodesic and surface navigation algorithms

There exists a continuing military requirement to review and upgrade (as
needed) the algorithms used to perform gecdesic measurement and perform sur-
face navigation. These algorithms affect the manner in which:

a. Mapping agencies measure distances between points (along a geodesic
or curve of minimum distance}.

b. Long range aircraft (LRA) navigate on the reference surface.

c. Long range naval operations (surface/submarine/air) perform surface
navigation.

d. Long range cruise missile surface guidance is performed during iner-
tial flight phase.

e. Strategic defense initiative surface interceptor problems can be
addressed.

(1) Airborne platform positioning and navigation.
(2) Reentry intercept.

(3) Intercepntion of compressed trajectory vehicles via kinetic Will
vehicles.

f. DOther (NASA type applications).

10.2 Current methodology

Use spherical trigonometry, with a compensated equal-area radius.

a. Basic spherical trigonometry relations.
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(1) Law of tangents.

tan AY ¢ cos a = tan AB

AB

Ay

o

) Law of cosines. Law of cosines generally used to measure out
distances (can also use tangents relation with proper parametzrs!.

cos Ay = cos ¢o cos ¢l + 31in @O sin ¢1 cos A9

S0
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(3) Law of sines. Law of sines generally used for heading/
directional information.

sin A _sin B _sin C

sin o sin B sin Yy

b. Current method. Uses spherical relationships and sguai-arsa radiys

value,
(1)  The eguivalent area sphere to oblate spheriod relation is as

follows:

=2 2 wp’ 1+
Wit md I ]
Rearranging:

2 2
-2 a b
& =5 rqo (In1+el-1n]1-el)

2 2 3 2 3
« 12, b _e e e” . e ,
= 32 + 29<9 5 t3 o tets += )J (assuming e small)

ti

"
N —
N g 1 0g 7
N
+
O
N
N
—_—
+
w
l N
D~

91




1 March 1988 | _ TECHNICAL NOTE

!
[TH
o
N
—_—
+
N
|5
N
N—”’
—
~
N

0y}
IR
o
N
-
+
wlo
N
N’
.

(2) The above approximation for the radius value is to be used with

Naperian trigonometry (assumed to be valid up to 92 correction).

10.3 Problems with the current methodology

a. 0On an oblate spheriod the radius vector magnitude varies from
b<|rl< a.
H2 \1/2
b. Now since e, the eccentricity can be defined as e = (1 - EQ > ,

then rearranging

a=bl1 - &) H/?

and if e << 1 then,

82
(2,

therefore:

[a}]
H
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b < I +' <b < 1+ e’ )
P 2 .

c. For the equal area compensation
2] <o (i)
BT 3

This value oFl ;‘ is assumed to be used over the whole spheriod.

d. A problem arises in the level of accuracy required for precision
measurements. The so called equal area method should have an accuracy limita-
tion on the order of (or no less than an order of magnitude less than) =

(on the earth, 82 =~ ,0067). For quarter turn measurements (the distance swept
out by a 90° central angle, this to be redefined later) errors from -5 to +11
kilometers can be obtained.

10.4 Introduction to FROST

a. Start by rederiving the spherical case geodesics, considering each
necessary component separately, and relating each component via a parametric
variable, A,

(1) For the spherical case:

p(x) = 2
p(0) = tan ' A
_ -1 A »
8(x) =6, % sec 7
-1 A /2
Y(A) = tan Bl 5— (synthetic law of sines)
A B B
2122 - g2 1/2 1
As(A) = a tan — (synthetic law of cosines].
1+ 8 A
0

(a) It can be shown that upon elimination of A, the above rela-
tions reduce to standard spherical trigonometry.
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(b) Spherical case quadrant analysis for ¥

QUADRANT I QUADRANT II

NIRECT
{
s 1o RETROGRADE
1¢
2 1/2
for ¥ the heading or direction angle, tan ! 3<.17“1_L:\ = a(A)}  nroduces
V2 - 3% )
the following terms:
&
Quadrant T Quadrant I1
g) T - glA) DIRECT
m o+ gld) 21 = (i) RETROGRADE

(2) For the slightly oblate spherical case assume the eccentricity
value e is small. Then using calculus of variations and solving for the

geodesic curves, keeping terms up to 92 only (eliminating e’ and higher terms)
obtain the following relationships:

2 }\2
p(A) = b 1+% .
1+ A2
6(A) = tan '
-1 A 92 8 -1 )\2_82 1/2
6 =8, * sec” z -3 - > N1z e\ T
(1 +82)12 1+ 8
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- 2 2 2 1/2
P(A) = tan ! 1 —-;— —2\——2-)3(%—:—1—2>
1 + A A -8B
A

As{A) = b (1 +—-——ei-—— tan—l 2‘__2__-_8_2. 1z - 82 (AZ - 82)1/2 !
a(1 + 8%) 2

1+ 8 a(4 + g2 )2 X+

{a) ¢ in spherical coordinates is defined as the geocentric
colatitude variable. The geodetic latitude variable is related to X by

L) = cot™! [(1 - &%) X] .

(b) In the above equations, in the limit as e + o, the spheri-
cal case solutions are recuperated.

b. FROST makes a first order attempt at solving for the geodesics on a
slightly oblate surface.

{1) It assumes the surface eccentricity (e) is so small that terms

of the order of eL+ and higher may be discarded. This seems a reasonable
assumption since:

2 . . . . .
(a) e corrections are from -5 to +11 kilometers ner quarhar

TUDN .

b .
(b) e corrections are on the order of tens of meters ner

quarter turn, assumed to be well within the noise of the actual surface fluc-
tuations of the geoid; therefore,

(c) Higher order terms (greater than e’) can be absolutely
discarded for the earth for any reasonable accuracy.

(2)  The above assumptions form the hasis for the limitations on the
use of FROST.

10,5 Comparison study

a. In comparison with the spherical relations note an apparent crunching
up of the curve for 6 at the nodal crossings.

. ™
8(lim A » =) = 6 * 5 sphere
T ez 38
e 3 0 = t— = — I i > C L ﬁt'_ 5
(1im A » =) 90 > (1 > <1 - 52) 77 oblate correction

also, ¥ (node) yields:
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P(lim A > @) = tan” B sphere

-.1 2
P (lim A + ®) = tan 1 - 123— 8| oblate.

NOTE: ¢ (limR + ®) = %-in both cases.
As| izg =43 -* %- sphere
2y . 2\1/2 2 2
As A= = b (1 ! (1 ~° )B ) G + 8 8 ) T oblate.
A =R (1+82)1/2 2 4<1+32) 2

e

2 2 2 2
b 2 39.(1_2 __8__(“ o et
=5 -2 2 T2 2 a0 )

2
L= T T = (keeping up to e? terms only).
2 4 1 + g2

(1) At first glance, this may look like nonsense, as 8 gets larger,
the distance traveled is smaller, but look at 8(X). As 8 gets larger A5 = 7

i3 not transverse so that this result does make sense.

(2) Parametric geodesics, symmetric about an arbitrary 9.

(a) Sphere.

AB

N
1}
=5
—N
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(b) Slightly oblate spheroid:

A

I<———A6=7r —%

TECHNICAL NOTE

b. Comparison of distance formulas. Oblate spheroid, perturbed spheri-
cal routing with great circle, equal area routing. Comparison will be from

the high point in the trajectory (or maximum latitude)
(A = =) so that A_ is evaluated as B < A < =,

{1) For the perturbed solution,

[ Hemiom)

o
A8 = >
»

R b ’ 82 1/2 B2_ e2 A =c
sn =5 1 - e — 1 + T .
1+ 8 a(1 + 8%))1 a=8

(=

B) to the equator
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(2) For the spheroid approximation:

&

ST

As

As T . .oom
cos 55-= cos ¢ cos-§ + 5in ¢ sin 5'808 A8

As = a cos—l[sin ¢ cos AB]

me’ 8
4 (1+32)1/2

I+ is convenient to call 8 in these cases tan ¢O, ¢O the minimum colatitude

but cos A6 = sin

value for a given geodesic, so that:

2 - 2
a Cos 1 I:Sin ¢0 e 3in (-E—g sin ¢0ﬂ5 g—a (’l - 2_‘ Sinz (bO)
2

2 2
T 2 .2 1/2 e e 2 ifs) e 2
Asn = b~§ ( 1 - € sin ¢O) (1 * 5 T cos ¢0>§ ?T'(q + 7 cos ¢0)

>
0
"

(up to &® terms).

Now, with e® = .0067227,

a B371.227 km

il

b 6356.912 km .
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(3) For the guarter turn (defined as B < X < «):

¢o Asn Asa

0 10002.196 10007 .898S
10 10001.690 10006.885
20 10000.233 10003.964
30 93998.,000 9999, 488
45 9883.805 89981.079
60 9989.609 9982.669
75 9986.538 9976.513
90 9985.414 9974.,258

All figures in kilometers.

Asn = Asa at ¢, = 35.568

Max diFFerence‘ Asn - Asa positive = 11,155 km
negative = 5.703 wm

The approximation is good to two significant digits.

c. The comparison of FROST versus spherical trigonometry is shown in
figure 1.

10.6 Geodesic measurement example

a. Measure distance between two theoretical bases:
(1) Base A: 4175000 N, 7321146 W (New York) geocentric latitude.
(2) Base B: 6070000 N, 2938000 E (Leningrad) geocentric latitude.
(3) Alongitude = 102091486
(a) 416918 N geodetic latitude.

(b) 8321670 N geodetic latitude.

99

e




TECHNICAL MEMO

1 March 1988

06

Uiy cndent) eoaog nostaRdund  quaunsansea),)

09 S e

Ve

L0l aand14

Adjauouodtdy [rotdsyds

oL

15044

UNERER

8]
X

a

0466

G466

0866

5466

0666

5666

0oootL

0001

/40001

OHWNFE<CZ O W

100



1 March 1988 o ’ TECHNICAL NOTE

b. Comparison of distances measured.

(1) Spherical trigonometry, egual area e? compensation, geocentric.

As = 65744.,0840 km.
(2) Spherical trigonometry, equal area e? compensation, geodetic.
As = 6716.2297 km. ' A = 8.7km
(3) FROST (B = .460748734, 6_ = 722318). A = 19.1Kkm
As = 5735.3776 km.
(a) Spherical trigonometry w/e? compensation, geocentric.
Let,

A be at longitude o°

B at longitude 10299146

A = {.748955721, 0, .662620048}
B = {-.111749248, .487352137, .866025404}
0 = 50364952234
2
As = b (1 + §§- ) (1.058533854)

i

6744.,0840 km.,
NOTE : @ = cos (K . %)

(b) Spherical trigonometry w/e2 compensation, geodetic.

A = {.746732702, 0, .665124253}
B = {-.111184443, .4B48B8355, .867473522)
0 = 60239902851
2
As = b (1 +~§}—) (1.054151313)

6716.2297 km.
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NOTE: © = cos™ (A « B)

{(c) FROST calculation (90 = 792318, B = .460749734)

A, Ay = 1.130294, A; = 1.277565
B, Ag = 0.577350, AZ = 0.333333
re = b tonl (12277565 - 0.2122903 >1/2< . 0.006722
- 1.2122903 V * TTT.2122903)
i 0.008722 (1.277565 - 2122003 )12
A (1.2122903 )1/2 2.277565
e = b tan) (2333333 - 0.2122903 )1/? 1 _0.006722
b 1.2122903 7(1.2122903)

0.008722 . (.33333 - .2122003 ) /2

4 (1.2122003 ) /2 T.33333

As_ = b [.754145026 - 000691664} = b(.753453361)

>
)]
il

(o

{.306480974 - .0003982597} = bH{.306082714)

As_ = b(1.058536075), with b = 6356.812

6735.3776 .
Given,

8 = .460748734

A = 1.130294
a
Ab = 0.577350
calculate AeT:
2 -1 2 21\1/2
A0 = sec’t l -2 8 +an ( A - B
B 2 ( 1. 82 )1/2 1+ 82
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AGL = 65.94351463 -
ASR = 37.05647301 -
ABT = 102.9146(35)

.06068861

.024663507 = 37.031809

2 65.882826

103
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APPENDIX II

20.0 THE TORUS

The torus is a very complicated, multiple connected surface, and, as a result,
one should not expect nice closed form solutions.

What is presented here is just an outline of how one might go about solving
for the geodesics on such a surface. The solutions presented are strictly
formal.

Define the surface model:

(r - a)z + 22 = b2 (a > b).
Then let,
2
(r-a)?- bz
1 + A
I"=Aa b
<1+>\2>1/2
bA
Z—+
(1+)\2)1/2
2 2 271/2
dz dr 2/ ds
f[dT) (%) ”(dx” »
and
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l\2 -

— = °C

€ ~2 »2]1/2
(1 +)\2)2 *rog 1
\ |
and
2 c%e? 202,72

(1+22)2
- CE 1 1 N
g =t c T (el > e .

1+}\2 2 (Pz_cz)l/z
B(A) =96 .

. dA
0o - Cf (1 +A2)£(f~2-02)1/2

Continuing,

2 2 2 1/2
As = a € +__CF€ . 21 dA
(1 +22)2 (1+2%)% (% -32)
~2 TJ1/2
As = av[— £ rz = 5 drx .
R
Finally,
b-221 +&L3 23
d\ "z  dA “r dx 76
fC R A— i+ b v latn(t+a
K1+>\2)3/2 z <1+}\2)3/2 r
! i
%(%_CZ)l/Z ()
2\1/2
e+ 2 o+ 33 o« (1+>\> + ce
By = £ 1, £, [ € = YCIEAEE
rir” -c
This can be simplified somewhat by letting A = tan ¥, then
r=abhcos ¥y
z =% bsiny
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e(q;):eotcs_'j: A2d¢212 (r‘=1i-ecosw)
r(r -c)

As(y) = bvjf(;z - Zz Y172 dy

_ A ) Secq""‘ . ce ]
D) =+ lzi tanwlpi[<'—'€——+1> A(Az 2)1/2]19
r -c

r
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APPENDIX III
30.0 A STUDY ON SURFACE CURVATURE

Surface curvature may be evaluated using the parametric geodesics and the
appropriate Frenet-Serrat eguations because the geodesics for a given surface
contain within them qualitative as well as quantitative information regarding
the surface itself. The parametric geodesics form a natural network or grid
which define the surface.

This evaluation is started hy presenting the Frenet-Serrat equation for cur-
vature, evaluating the Christoffel symbol of the second kind, showing the
parametric evaluation for the symbol, then proceeding directly to the spheri-
cal case.

. . i
If x* are the coordinate variables, At = %g- the unit tangent, then
al Loy g i i
+ AT =—— = Ku (where K is the curvature, p~ is a unit vector).
ds o8 ds
Now,
—1
= - .
2,2
~ 1
= -r sin® ¢,
3,3
[t
1,2 F

2
( = -5in ¢ cos ¢ ,
3

3 o
!7 =cot ¢ . All other rl =0 .
2 0‘,8

For the sphere (r = a ) and ,
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1 2

[

|33 1+ A

N |
N
N
I
fa 1)
.

(3 1
2,3 A

30.1 Spherical case

Letting
1
X" = a
x2 = tan— A
3 -1 A . Cy . .
X" =8, + sec 7 (choosing the positive side).
. . 3 -1 A .
NOTE: The result is the same if x° = eo - sec E-ls choosen.
Then,
Ao
A z%g'
1+ A
X 1 228
A2 1/2 ds
A—?_1>
B8
and with
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3]

( i2+ 82>.<1 +A;2 ! 2}

2\1/2 A
ds = dA 1 B
s [a( + ) (1+A2)(A2-62)1/2:|
a (1808 - 2) e
ds a(’|+82>1/2>\ ?
}\2=<X2~62)1/2
a(1+82)1/2)\
3 8 ’1+>\2= 8
a<1+82)1/2 22 L<1+>\2>1/2
1
da
Eem
and
) Y ‘l X (
Ku =D—a{ -
a2 (1 + 8% )22 P [a?
. 1 !-AZ-BZ+62(1+A2)—]
a(1+82) 22 A2
. 1 Lx2-2+2+2,2]
a(1+82)2? e
o1
= - .
Evaluating,
dkzz_d__ (A2—82>1/2 i
ds ~ di a<1+82)1/2>\ ds

1

B2)—1/2 _ (Az

_ B2)1/2~| 1

a(’l + B

2)1/2

)\2

-

(1 . }\2)()\2 _ B2)1/2
: A

+

2

——

a* (

1
1

+

A .
g%)

(-]

A
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82 (1 +2%) .
a2 (1 + Bz )As

Now

2 2
w? - 82 (1. +2%) 1_[)\1)\2]_ A E\a}z
CTEG ) e 1427

B2 (1 +2%) L, A | 8> ,(1+>\2)2,
a2 (1 +8%)° 1+ 2262 (1 + %) A

= D L

3
Evaluating g%— is somewhat more difficult. Remember that the great circle

route in parametric curvilinear coordinates is a multiple defined curve

based on a multivalved function.

. -1 A
= + Z
9 60 tsec g o,

Consider:

i

The first derivative is t Eg' , depending on which side of the curve (or,

better said, which branch) is chosen for use; however, the second derivative

2
49 5 both equal in magnitude and direction (all concave down) on either

i’ )
side, so that a straight forward brute force 4@ evaluation gives contribu-
da
tions from both branches. The term must be divided by two for use in the cur-
vature equation.

Continuing with,
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9&3_=<1>d—< - -“AZ) : (e aD0G2 - 82) Y
2 /dA A

a<,|+$2>1/2 A2 a<1+82)1/2

; (%) ___E‘_____(2A3 ACE x2)>(1 BOICORE:

& (1 +82%) A A

i (1+)\2)(>\ _82)1/2
(1 + B ) A

and
8 1+22)(W2 - g?2)V2 1
o -t el SN
. g ,(1+K2)(>\2—62>1/2 ((}\ B2)1/2 >
a2 (1 + %) , At (1 +382)Y2,

o)
a1 +82)12 )2

i
o
.

. -1

So, the solution for Kpb = 1 < 0 ), constant and in the -f‘ diractinn., This
A0 v

is known to he generally true, not only for the great circle routes bub for ths

surface of a sphere [constant curvature, independent of where the observer is

(60, A) or in what direction the observer is looking (B)]. This is an impor-

tant-result. It also points out what would have happened had not 1/2 of the

gx term been taken when evaluating the curvature (Ku3 # 0 but a function of

N

A, 8 which would not make sense).

For completeness lets turn our attention to evaluating the torsion of areat
circle routes,

Fortunately it is a trivial matter to show that t, the torsion for the para-
metric spherical geodesic is 1t = 0.

From
i i B . .
du adx _ _/,,1 i
B | S ()
af
now
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de - AB
ds
and
-1 -1
i _1 21 -
Ku® = Y 0 K = S u ]
0 0
du -
E‘— D .

1o .
( N et = 0= Tt
af
NOTE: o = 1 always, otherwise u = 0.

=1
a
1,2
so that
(3)()¥ -2t
a a
TU2=D .
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3
THu =0

WED.

For the minima solutions on the sphere there is zero torsion and constant cur-
vature, independent of B8 or A. It is probably primarily for this reason that
the sphere is so clean to work on.

The end of this section will concern itself with the evaluation of curvature

on a slightly oblate planet. Coordinates to be used are, of course, spheri-
cal.

The appropriate expressions are:

_b1+§_2_ }\2 =xl
2

©
i

- 2 _ 2 _ ,2\1/2
8 =8 + sec ! %-— ;—- g 75 tan 1 (ﬁ____%__> = x3
(1+8%) 1+ 8
Now,

2 2
R P

e ke

and,

do . __bet

dA (1 . Az )2

g _ ]

L2

99_= 1 - Ei A (in the derivation o't

di A2 1/2 2 (1 . )\2) 22 1/2 ’
B ' B

terms will be collected and ignored when justified).
dA

i ’ ) (1+)\2)2 .(Lz_sz)l/z
ds b<1+(1_82>62>1/2 1+<1+£29-2-)A2 A
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NI (A2_82)1/2 . 1 =Q>il

ds (1+(1-92)82)1/2 1+<1+£;_2_>)\2 ds
K (1292 - 2) 2 s

s=b<1 +<1 -92)52)1[2 [ +<1 +§i>>‘{’7 ds

>
3 _d8 g (1 +22) (1 +22) ez:lzdxs
2

TE LG - D) [ +(i+;_>xz]t \2 2

i .
Now, the %%— terms need to be formed, remembering to take-% ds <de ) .

After considerable algebra, and keeping terms up to e? only:

al 21 +22)2(1 - 2% + 28%)
T 0O ()T
dA2= 62 (1 +a2)"
ds b2(1+(1'—92>62>,\3[1+<1+§i>ﬂ3
- i
2 a2(1422)% 382 « 22(6% - 3)]

o2 (1 + (1 - ez)sz)x3[ +<1 +§_2>>\2]3

and
2
.’ = -8 <1 - 22 )2 (AZ - g% )1/2 e? . <1 e >2 v 2 22 <2 N xzj}

ds b2(1}+(1-92)82>[1 +<1+_§.2_>>\2]3L A _I

Finally the curvature can be calculated:

Again, after considerable algebra, the following is obtained:

] =_%+e2[1 2 (G +282-A2>)}

B 21 a2 (148901 22
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2 & (387« %% - a?)

T2 (1 a2 (1+8%)

KHSED .

Ku

Combining all terms, the curvature can be written as:
i i
Kokg * Ky¥p

- 2 ‘
where Kl“i is an e perturbing term.

Ko“gz% 0
0
l( A ‘l+282—k2>
b\ 2 (1 +2%) (1+8%)(1+2%)
. 2 2.2 2
Cul - 382 + %% - 2
bl b2 (1 + 82)(1 + A%)a

et = (g () (?))172)

30.2 Conic curvature

p = ak
b = Sin—l a
1 -1 Ao . . .
8 = 90 * ¥ Sec o the positive branch is chosen and as in the case of
2
the sphere take one-half the value of ELé%).
ds
de
dx
do _
o =0
@ 1 1 ] c
dA “’\(a%\z i 1)1/2 00\(0‘2>\2 - C2)1/2
2
c
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ds _ aa i
E’A“(az)\z S g2 ) e

Now,
2
do (azxz - ) 1/2
ds = ar
do _
I5 © 0
_(j—e_-= C
ds 2.2

d? 1 [ 2.2 2) -1/2 2 2.2 2)1/2 232 - o2 1/2
dsg—az)\zak(a)\ —C) C!)\"((X)\ —C). a:|.<a FEC(CX)

.2 )1/2

1 2.2 2.2 2 22
o:.)\2<<>¢2A2_(32)1/2IEJ‘A “(O")‘ -C)]'(a a o A

_ o2 ] (az)\z _ Cz) 1/2
a A
OL>\2<0L2>\2 _ 82)1/2 a
2
PN
a A
2
EL%—E 0
ds
_’I_dze____ C .az)\z—-cz
2 4g2 R -:12/\3 ACA
i D<a2>\2 _ C2)1/2
2253,
Then with:

ds ds

K I cz (+ 0) - A cz C2 _ CZ -0
" aa?')\3 * azaqkh aa2A3 aa2A3 _
TR
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2
2 2\1/2 c
W' =or0-a(n-at ) e o
aaai
2
Ku3__0(“2’*2'0>1/2+l_ (azkz_cz)1/2 e ).,
N 2 3.4 aa aX 2.2
aao A aa A
<22 2\1/2 (22 2\1/2
_C\a A" -c ) +C\aA -¢
azcx3>\l+ azaBAq
=D.
So that for the cone,
0
, 2 2V1/2
+<ul=°°‘(1 ) -1 (lim o > 1, K = 0).
2 L4
aa A 0
Evaluating
|Kui| . Cza (1 - a2 )1/2
a 4 3 ?
o A
NOTE: }K]~1—-

It is easy to show that the curvature of a helix (the parametric cylindrical
geodesic) is in the ir direction only.

For the three cases (sphere, cone and cylinder) where it was shown that the
surface constraint was written of the form u; = constant (1 = 1, 2 or 3; u, a

curvilinear variable), the curvature Xu* of the represented surface (assuming

it existed) had a component ONLY in the Ei direction,

Whether or not this is a general property is beyond the scaope of this tech-
nical note.
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APPENDIX IV
40.0 SURFACES OF REVOLUTION AND LONGITUDINAL ASYMMETRY
Calculation of geodesics on surfaces of revolution and first-order pertur-
bation due to longitudinal asymmetry (analysis in spherical coordinates) can

be accomplished as follows.

Starting with the spherical surface metric: -

2 2 2]1/2
e [l(2) (@) s o ()] m

assume the surface can be written:
p =p@) ,[=p)] , asurface of revolution.

Then with ¢ = tan—l A, 6 = ¢g(A) obtain:

(=]

2 2 2 1/2
AS:fpo\) . [<1 +(1ﬂ’_> )( 1 2) . A 2 g»z] ax
p 3¢ 1+ A 1+ A
Let(
2 2 1/2
As =-jr§(xl Pw + q(A)) °< ! ) R 5 g’%} dx
1+ A° 1+ A

Since the partial of the integrand with respect to g = 0, then, as done
before, let

2 2 -1/2 2
c=p(\) -[(1 +q(>\))< ! ) P S ] Aot
2 2 2
1+ A 1 + A T+ A

>= alA) then:

'Ol_\
QJlQJ
- lo

where ¢ is the first constant of integration.

Solving far g‘ gives:

-, o .l— 1+ q(A) 1/2
ST VO R 2 ;
o2 (14 99)
L p” ()

1/2
6 ¢ ! 1 al) 2
0 A e p(X) 5 o2 ”
A ——E<'|+>\)

0

and:

6 ()
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8y, the second constant of integration.
For the sphere p = constant,
q =0,

letting ;,C' =&

g -2 B2 (h-82)- 8V

Letting c = 52

For a slightly oblate planet, where e’ terms are significant, but not 96
+ terms, proceed as follows:

o £ 5 (=)
‘ 2 2 8 ; 2
T+ A AT o+ A B

o (A) = tan-1 A

o (X)

calculate 8 (X) by noting

1189




1 March 1988 - - | TECHNICAL NOTE
(L-q 1/2 =1_g_z_. X +84|' X ) %
2 2 2 L2(1+>‘2)2 8<1+A2)2

r 2 8 tan-l( - )1/2
AEL SNSRI <
B 2 <1+82>172 1+62

32 8 J

&' AdA _ A2 ‘]
e 2 1/2 2 1/2 ’
(L-1) (1 +2%)2 4(3‘—5 ) (1 +22)2
2
This solves explicitly as:

' 2 » 2 2\1/2
-1 A e 8 -1{ A" - B
6 = + . oAU — AP
) 60 {éec 7 "> (1 - 32‘>1/2 tan < > )

- (= .(A2-82>”2+___1
B l2(1+82)Y2 \qaa? \ 144 (1 +8%)

) )ty e ()
« tan —_——— - ¢ tan | —m———— .
1 + g2 (1 +82)Y2 1+ g2

H (1) and As(A) can now be solved for by the usual method:

eant g (AZ . )1/2 S SR ( A >2
(8 L] ——————————r— . p— ——— - o ——— it ettt - — — »
22 _ 42 A R

‘ 2 1/2 _ 2 _ ,2\1/2 2 2
As = b <1 - 82 8 > ) . {tan L (A————€;—> . (1 + g_ -.___Ji___z
1+ B 1+ 8 4<1+8>

o2 : .02 _ B2)1/2 +§-§— . tan_l<ﬁ_ g2 )1/2
a1 +82)Y2% 1.2

<
—
>
1]
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Longitudinal asymmetry is a very complex, highly nonlinear problem, solvable pri-
marily via successive approximation.*

Start by assuming

p = all + eg) where e <<1

In the analysis assume the primary interest is in working on a small surface

portion, or sectoral slice, where the above assumption is approximately true;
also, assume working in the low to mid latitude region is of primary interest,

thus excluding analysis in the polar region, ie, e? ~ 0 and € << ———— for

all A in the domain of interest.

On the earth such an example would be the geodesic from St Louis, Missouri
(elevation ~ 1000 feet) to Denver, Colorado (elevation ~ 6000 feet).

Continuing:

As =f[<%%> : + 02<%—§->2 + ;:)213in2 ¢<%—2—>2:'1/2 dA
%%-= ae g |

and

2 2 1/2
As = & (1+€gJ€2,z+_1___ L A -2 o .
g 2 3 g
1 + A 1+ A

The integrand can be written:

2 2 1/2
(1+eg)( 12>+<82+ )‘?_)gz dx .
17 + A 1T + A

which can be further approximated as:
2 2 1/2
(1 +eg) ! S 5 2 2
1+ 22 1+ A

*Reference Einstein, Law of Gravitation, pgs. 328-334; Lass, Vector and Tensor
Analysis.

121

-




1 March 1988 - TECHNICAL NOTE

In this example, letting the integrand be §, we see immediately %é £0 ,

Therefore we must use:

and collect terms in €, setting up for a successive integral approximation.

Continuing,
8_6_=€ ll + >\2 g‘21/2
%2 [ (142%)2 1 40?
: 2
(1+€g)'——>\——-5g
94 - 1 + A
8g” 1 . \° g,21[2
(1+22)2 1422
L . 38 36
Rewriting the equation as — = +C
& . og g
(Since as €+0 we must obtain the unperturbed spherical solution, and leftting
[ ] = ( ] >2 +__ﬁi__g’;1 : ’
1+ 2° 1+2% ]
2
A -2 1/2 1/2 1/2
L °<cg+f[]/d)\>+c'[]/ :

1 + A
The system becomes:

2 ) / 2 2 o {172 - )
—%g—CR—J—?) + A zg;‘ =€.{[ ]l/2°<cg _,f[ ]l/z dx)j
1+ A a

142 A

Stert by setting € = 0, solving for g obtain:

A
= + ot
2o 90 tsec g .

Substituting this on the right side of the equation, obtain:

1/2

_.é____a’—c[]l/2=g.“<_._1_._)2+ 1
1+ 22 ] 1+ A? (x2+1)<>‘—2—1)-l
L g

122




1 March 1988 o o ’ TECHNICAL NOTE

2 1/2
-1 A 1 1
. cb * csec =+ + da
0 B (1+A2> ()\2+1)(>‘_2-1>
BZ
2
A - 1
N I LANTIN

1 + A
where e (A) =

2 1/2 2 2\1/2
g o A 5 JE:;£175> e {c 60 + ¢ sec” %-+ tan! <2L—¥1—%— )
1 + A A -8B ) 1+ B

The next iteration for g (= gl) can now be set up and performed numerically

(note € (A) has a £ term, this accounts for asymmetry in the {6 direction).
Now obtain:

A2<>\2<,‘ _ Cz)_ Cz)g»z -2 e e e - | ]1/2

continuing the process of successive approximation:

2 \1/2
(32 (1 - 2) - c2) e e o? e 20 etn) - = ,(1+B >
‘ ‘° 12 2

2 2 1/271/2
()6 s oo e 2 (28
3 1 + A AT -8

and finally:

1/2
- (1 + e+ (X))
g =9, 32 1/2 dA
B
2 2 2 2\1/2
1+ 3 e 1 o e e (£22) ]
(1"'}\)2 AT -8B 1+ B
2
NOTE: g% = —C
|- 2

(™)

Caution must be used when determining which combination of %’s need to he
employed, and on which side of 90. Once this is accomplished, ¢(A) and As(A)

can be calculated in a straight forward manner.
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PREFACE

This is the first addendum to AFSPACECOM Technical Note, Surface Navigation
and Geodesy, A Parametric Approach, 1 March 1988. This addendum will address
two issues not covered in the aforementioned publication.

First, a practical problem involving conic geodesy will be presented and the
solution discussed.

Second, the solution for the parametric geodesic of a paraboloid (parabola of
revolution) will be presented, but the analysis will involve the use of para-
bolic confocal coordinates.

It is hoped this addendum will further demonstrate the value of the use of
parametric analysis in solving problems of surface geodesy.

THIS TECHNICAL NOTE IS THE WORK OF DR. K. CARLTON-WIPPERN AND DOES NOT
NECESSARILY REPRESENT THE OFFICIAL VIEW OF THE US AIR FORCE.
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I. AN APPLICATION OF CONIC GEODESY

In many circumstances the surfaces of certain physical features can be
approximately modeled (to a very high degree) by that of a cone. A case in
point would be Mount Fuji in Japan, which will be assumed to be in the shape
of a perfect cone. Consider the following problem:

A group of Shinto monks are making a pilgramage from their home in Kofu to
their seaside temple at Numazu. On the route their master has selected, they
will have to pass across the base of Mount Fuji, from the northern most point
to the southern most point. The leader of the noble group of pilgrim monks
has been charged with taking the route about or over Mount Fuji which will
traverse the minimum distance. It can immediately be seen by symmetry that
there will be at least two routes, one about the east face and the other about
the west face. Not withstanding this temporary dilemma (which will be decided
by the toss of a coin) the following elements will have to be calculated/
determined:

a. The minima curve.

b. The total distance traveled.

c. How high up the side of the cone will the monks need to travel.
d. The initial angle of attack.

Given, Mount Fuji has conic parameters.

—r —
So that,
p = (h? + r.2)1/2
0
=TI
*7h
= r
(h? + r2)172
1
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Solution. Reference paragraph IV, Surface Navigation and Geodesy, A Parametric
Approach, and obtain the parametric conic geodesic:

p = al

¢ = tan"! a (constant)
N Y4 Y

8= 90 * 5 sec ( < ) .

A diagram of the probiem.

SIDE

start point

sample
geodesic end point TOP

The selected geodesic is symmetric about the HIGH point in the route to be
chosen, thus it can be concluded that Pmax occurs at 8 % % , so that

FRENES

Returning to the parametric geodesics;

o Ll (2
<from g = Bo + = sec < c ))
T
sec <7

_ _ max
c

(from p = al)

OV

ml;c

max




ac _ =a(r
T " Pmin T 7 (a P, COs <7
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so that

a 2 ’
this fixes the parametric curve (90 = % for west face ascent, g for east face

ascent.)

Now, p_. occurs at |8 - 8 | =0, so that
0

min
7')‘min
l=—

LS

)

From this obtain

Pmin = pn cos 2 )

The distance, measured from ground level, traveled up the side of the mountain
is

The total distance to be traveled from one side of the mountain to the other
can be evaluated as follows:

_ ., c? 1/2
As = a (k - ;; >

So that, for both ascent and descent parts of the geodesic:

A

0

As = 2a (xa ce y1/e ) VP /80T gy
A= m1n/a) =X min

Now, since

c
A . =
min Y ?
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>
n

ml o
o

max
= 2 In
c=— cos<2> ,

As

1]
N
ol
[+}) | ©
n N
'
~ ~
N Y
QD ©
Nje N
(]
o
w
~N
/N
NI"{
=
N—”’
| |
-
~
o

: m
As = 2p sin 'R >

0

The initial angle of attack, defined as the angle as measured off from the top
of the mountain, measured in the plane whose normal is parallel to the conic

surface normal.

From

wnoe[(2) -]

X
max = sec<%ﬂ> .

tan ¢

1
2]
o
o
P
N|~<
=
~—
1l
+
[N
oo §
N
NE]
]
N|~<
=3
S~

ST o1y
=5 (1-7)
Summarizing the solutions:

Total distance traveled = 2p sin %E>
0
Distance of ascent up the mountain side = p [1 - cos<%E )} .
0

Initial angle of attack = % (1 -7).
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II. SOLUTION OF THE PARAMETRIC GEODESIC FOR A PARABOLOID (SURFACE OF A
PARABOLA OF REVOLUTION)

This section will be brief, outlining only the most necessary steps required

to get to our objective, that being, defining a surface constraint and develop

the five equation parametric solution for the geodesic curves (the necessary

surface navigation relations).

For simplicity sake, the surface defined in cylindrical coordinates is:

r¢ = 2a (z + % ) ,

where a is an arbitrary parameter.
Parabolic confocal coordinates can be described as the set (£, n, 8) such that

8 is the same longitudinal variable as described in cylindrical or spherical
coordinates, ‘then using p from spherical coordinates and Cartesian z,

and the surface constraint equation can be transformed to:

-
n
H

a(2z + a)
z? + r2 = z? + 2az + a?,
72 + r? = o2

(z + a)?

©
il

p=1z+a
p-z=a=¢g

hence, the surface constraint is equivalent to setting one of the curvilinear
variables to a constant, namely & = a.

Since the Jacobian matrix is formed to show curvilinearity and obtain the
scaling factors, it is convenient to work with spherical coordinates as an
intermedium:

X p sin ¢ cos © p sin ¢ cos 6
Y | =1 psing sin® | ={ p sin ¢ sin 06
z p COS ¢ z

From
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p-2=¢

ptZ=nm

2z =n - §

so that

z=1%(n-%)

Now

p = 3(n +8)

so that

cos ¢ = % = 2 - g

e (1-())”

=3 i I (n? + 2n% + £2 - n? + 2ng + £2)/2

_ 2(ng)!/

nté

X = p sin ¢ cos 8

= iy + £)2 (25+122 cos 8

(ng)*/? cos 8

A similar relation exists for y, so that

X (ng)*/2 cos ®
y |=| (ng)/2 sin e
z in - 8)

The Jacobian matrix can be formed by taking the appropriate partials:

/%<% )1/2 cos 0 %(% )1/2 cos B -(n(i;)’/2 sin 6 )

J = %(% )1/2 sin 8 %(%)1/2 sin 9 (ng)l/‘2 cos 6 ;
H -3 0

- y
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It s now a simple matter to show that, letting Ii represent the vector of the
ith column in J,

oI hJ N l:hj
where

.. = (0
835 = (0

0 #

i#]
i=]

)

Thus, the coordinates are truly curvilinear and the scaling factors may be
obtained as:

- %<1 +<%>>1/2
SHEE O

(ng)*/?

>
1

>
I

p
il

3

The distance equation becomes:

- (0 + £)(dn)? + 75 (1 + §)(dE)® + n(do)?

I~

(ds)? =

N

Rewriting parametrically, with £ = a

Sl o(B) - (@)]"

There are a variety of ways which can be chosen to solve this equation, for
example

i =j[:i—n(“ ra)(G) 3—2—)2] 72 4

Let
n = af
8 =g

(]
|

= aj[i—f(f +1)fE fg’z:l 1/2 gy

and since the integrand is not dependent on g explicitly, then letting & repre-
sent the integrand,
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set
W
3g

fg~

=c

[%?(f £ 1)f2 + fgo2 | VP
F2q72 = c? | —=(f + 1)F72 + fg’z]

[ - fc2] g 2 = S(f + )2

. _cf [f+17]1/2
$ 77 f - c?

f+1=)2f -\
A\2c? + 1
-1 7
. 1
fo = —] ()2
e L
2\
= ————— | \%c% - c% - \%c? -1
2l ]

_ -2a(c? + 1)

Az - 1)

Continue with

c (f°

c[-=2x(ct+1) (W -1)
o ¥ 2 (A2 - 1)2 2\2c2 + 1 M)

2 A2dX
0 c(c® + 1)vjﬁ(x2 - 1)(\%c? + 1)

f =

1)2xc? - 2x(\3c? + 1)]

(o]
I
[s =)
+

il
L=~
+
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now

1 -1 1 _a
(x - 1)(ax+1) 1+a|x-1 ax+1
so that letting
a = c?

X = A2

2 1 - c?
g Boicf)\d)‘<x2_ 1> <ch2+1>

Solving the integral:
2 2y 2

fx I -5 G
A2 -1 ¢ +1

A2 _ 22
f)‘z_ldX—-fl_)‘zdx

Let

X = tanh u

d\ = sech?® ud)

2
Jf‘xzx ] dy = - ftanh2 udu

- j-l - sech? udu (sech?z u - 1)

- (u - tanh u)

(\ - tanh=! 1))

c2)\?
| Ja e
Let

cx = tan 8

= tan? @

O
)

>
n
|

Q.
>
H
|

i sec? 6d6

obtain:
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%.J[kana 8de

vfﬁseca 8 -1de

Ol

|
|
|

(o]
It

8 =0 = [c tanh-! \ -

Recapping the first two coordinate variables:

£ =a

2
3 A\2c? + 1
A -1

=
"

1 — 1 -
E(tane-6):|--|:E|ck-tan1cx|]

8, Fc [(x - tanh=! x - X - % tan-! c) }

tan~! cx]

TECHNICAL NOTE

In this example, one constant of integration, c, appears in two coordinate
variables, however, the curve is still symmetric about an arbitrary 6 , as one

would expect from a surface of revolution.

Continuing for v,

-)_ d“,. dg.
D= h1 By e + h3 Iy e,
-» S
D e,
tan = R
YE3 .

1

which resolves as:
2~2

Q= a x2c? + 1
z2 -1

_ -2a\(c? + 1)

dn
N (Xa R 1)2
de _ c(c? + 1))?

dx (a2 - 1)(A%c? + 1)

=
"

)‘2

(ey1/e = 0 (K21

1 )1/2

10
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ho=3(n+g)/e=@L ;/2<1 RSk 1>1/2
1

and obtain:

- -1 c . 2 _ 1/2
P = tan [EI—:—EEST7; (X l) / }

Finally, for distance transversed:

As =f[%-ﬁ(n + a)(%—‘%)a + na<%>2] 1/ dx

A2 -1 A\8c? + 1 4)2(c? + 1)
As = a . +1) -
_jﬂ[;(xzcz + 1) < 22 -1 ) (22 - 1)

N 2\2c2 + 1 c?(c? + 1)2\" 1/2 i
e - 1 ( (N2 - 1) (et + 1)2>

As = awj’.(ﬁii::—i—lli )1/2 di

(7 - 1)?
_ 2 22d) = 22d)2
As = a(c? + 1) V[}X T a(c? 1)«[.(1 oL
_a(c®2+ 1)

As )

[sinh 2 tanh=! X - 2 tanh-! x]

11

-
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X w/appropriate change of limits.
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PREFACE

This is the second addendum to AFSPACECOM Technical Note, Surface Navigation
and Geodesy, A Parametric Approach, 1 March 1988. This addendum will address
two classes of problems not previously covered.

First, a dicussion of the surface overtake problem is presented. This is a
classical naval problem, whereby a submarine is sighted by an intercept craft;
the submarine submerges and, at an assumed constant velocity, races away at
some random angle 6 (measured with respect to the initial line of sight of the
intercept craft). Assuming the velocity of the intercept craft to be greater
than that of the submarine, what is desired is the curve the intercept craft
must take to eventually overtake and catch the submarine (this is a well known
curve). The presented problem, solved on a local planar surface, also

~ addresses certain quantities of operations research interest, such as mean
distance to intercept, variance, mean time to intercept, etc. The overtake
curve for a sperical surface is then solved for and presented.

Second, the problem of minimum distance navigation on composite surfaces will
be addressed; specifically, navigation on a sphere which contains a spherical
dent on its surface (an approximation of the surface of the martian moon,
Phobus).

THIS TECHNICAL NOTE IS THE WORK OF DR K. CARLTON-WIPPERN AND DOES NOT
NECESSARILY REPRESENT THE OFFICIAL VIEW OF THE U.S. AIR FORCE.

TC-1
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I. SURFACE OVERTAKE PROBLEM

This is a special application of the general curves of pursuit problem
(for example, reference Differential Equations with Applications!). In this
case, for a given surface, an interceptee vehicle is sighted by the intercep-
tor. It is assumed the interceptee takes a minimum distance route away from
where he was sighted, at some random heading angle.

a. Solution on the plane.

)
d A

We set up the coordinate system as follows, at time t =-<51-), the inter-

V'
0

ceptor is at point A, the interceptee at the origin (point B), at a distance d
from the interceptor. The interceptee takes a linear route away from the
origin at velocity V,s SO that at time t = 0 the interceptee is at a distance

d from the origin but at an unknown (heading) location.

N
/‘\\
/B \e———circle of radius d
/ \
4 X
‘ A
.\ /
\ v
~ -~
-

The equation of motion for the interceptee is (in polar coordinates)
8 =8 (unknown)

r=r o+tvt (where r, =d).

1Ritger and Rose, Differential Equations with Applications, p. 94.
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Assuming the interceptor travels at constant velocity v, (v1 > vo), the polar
equation of motion for the inteceptor becomes
s2 = r? + r22 (s2 = vf)

and for eventual overtake and capture, the interceptor's r(t) component must
match exactly to that of the interceptee, thus

2 = 2 2 p2
vi = vl o+ (r, * v,t)? 8

. (vi - ve )1/2

1 =8
rO VO
1+r—'t
0
Letting,
VO
U=1+r—t s

Rim
1l
N
<I<
QN = N
1]

—
~——
~
~
n

and solving, this becomes:

=u emIABI .
0

Substituting back for r

AB
r = 1r'oemI | ,

or parametrically, the solution curve for the interceptor is

= +
r r vot

0).

@
1]
Rl
—
=

(choosing 8
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b. Statistical results of the planar solution.

With the interceptee heading angle (@o) defined as a random variable, it is a

reasonable question to ask what are the mission statistics for the average
mission (eg, average distance and time to intercept, and variance values).
Borrowing heavily from Parzen? we look at

r=re°‘e
0

for the solution curve, then letting 6 be a random variable

de =

fI—
HE

2Ma .
where r,srs<re assuming an eventual overtake no later than at 8 = 2.

Normé]ization for the distribution on r becomes

2mo
r.e
_ dr _ 1
1= ccj/j r ’ ¢ = 2na
Y\O

so the density function p(r) is

1 1 2T
— = r <rs<re
2na 1 0 0

0 otherwise

(r)=(
"l

Solving for the average r

r
<r> =qurp(r) dr = 2%; e . 1)

Solving for the variance of r; first

o
<r2> =qur2p(r) dr = 2%; ("™ - 1)
and the variance

§2 = <p2> . <p>?

becomes

2Parzen, Modern Probability Theory and Its Applications, pp. 308-316.
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2

r
_ 0 smaQ 1 2 2T 1

52"m[e (1-#)*me '(1+11_a]

With the average radial distance, the time to intercept becomes:

1
<> = + = — <Pp> -
r r, vote R te v, [<r ro]

where te js the average intercept time (vo, o and <r> known).

With te’ the average total distance traveled per mission becomes:

S-Vl'te

_ro<£>u”“-u+zmn

21 Vo

If v, > v, (hence 1/a >> 1 ),

- 1 Vo 2
SZ'ITY‘D 1+'z<v—1>

[Note, ordinarily the density function would be a function of s, the total

distance traveled, not r; however, for r = roeae r and s are linearly
related:

ds 2 _ 2 de 2
<ﬁ>.'1*”<5>

Now,

r=r e“e,

0

dr abd _
Jg = or,e = ar
and
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SO

ds=dr<1+1—2>1/2

[+

With s and r linearly related, the developed statistics do not change.]

c. Solution on the sphere.

In this case it is assumed the interceptee takes a great circle route at some
unknown heading away from the origin (defined here as in the last example,
the point where the interceptor saw the interceptee). Let's assume the origin
is at some known latitude and longitude {La, Lo}. We rotate the sphere so

that the origin is at the north pole of the primed system (we do this using a
topocentric rotation matrix?®).

sin L_ cos in L_ sin L -Ccos
a L0 s a o co La
M0 =| -sin L0 cos Lo 0
o . .
cos La cos L0 cos La sin Lo sin La

This rotation produces a figure similar to the one shown below

Using one more rotation about the primed polar axis

cos o -sin o 0
M1 =! sin a cos « 0
0 0 1

3Mueller, Bate and White, Fundamentals of Astrodynamics, p. 79.
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this aligns the interceptor A along the new (6 = 0) axis as is shown below

£

where (for a sphere of radius a) the distance between B and A isd =a - ¢ .

If B is at the origin at time t = - <a ; ¢ ) then at time t = 0, B will be
0

at some random heading, a distance d = a - ¢ away from the origin:

In this coordinate system, a great circle is represented by 6 = éu [consider a

vehicle at the real north pole, any great circle route would be due south,
along a line of constant longitude]. Thus in this coordinate system, the
interceptee's equation of motion is

Again assuming the interceptor travels at constant velocity v, (v1 > vo), the
equation of motion becomes
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s2 = p2 + p2¢2 + p? sin%¢ (and since p = a)

vZ = a%¢? + a? sin?¢ 62

1

In analogy to the planar case, the ¢ components of the two curves must match,
hence:

v vZ - y2 1/2
de = dt - csc <¢0 + 53 t> »<—i——;43 >
a

;<_ 1>1/2
o vﬁ

a d8 = csc u du

R
@
n

1 + cos u'
c-n l sin u
sin u ]

————— | = B - C
1 + cos u

In

sin u _ Aeae
1+ cosu

but

sin u
1 +cosu

il
o
3}
ct
pre

1]
o
o
o
+
e}
-t
>3

and setting @

¢ = 2 tan~?

Ic-f
o
=
Nl'e.

o
(1)

124

<D
| I
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or, pahametrica]]y

#(t) =9, + =t

v
[1]
¢o+a—t

2

with (¢, 8) solved for in the rotated (or primed) system, the solution in the
original (unrotated) system can be easily generated, this by creating the
primed vector

- In tan 5

Rilm

¢
8(t) In tan ]

sin ¢ cos 8
B’ =q sin¢ sin 8 L
cos ¢
then finding
p=(MM)* P

Interceptor latitude and longitude data is available directly from

cos La cos L0
-> .
p = cos La sin L,
) »
sin La

Mission statistics (averages and variances for a randomly headed interceptee)
can be calculated, albeit numerically, as before.

d. Direct intercept problem.

This is the standard curve of pursuit problem, whereby the interceptor sees
the interceptee, and pursues the interceptee along a curve such that the
interceptor's heading is constrained to be simultaneous with the line of sight

to the interceptee.

(1) Solution on the plane.
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Construct the coordinate system as follows:

L X
A ————a—iB

where A is the interceptee, initially at the origin, and B is the interceptor
initially located a distance a from the origin along the x axis. Starting the
clock at time t = 0, then at time t = §t we assume the interceptee has trav-
eled some distance &s along the y axis at velocity v and, similarly, the

interceptor has traveled some distance §s, at velocity v.

Refering to the figure below:

y

In time 6t the interceptor has moved

ds 27 1/2
1 _ 1 dy
Sl e

ﬁ(so)

0

And the interceptee has moved in the same time.
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Now, distance'so, measured from point B on the curve y = f(x), is equal to

y-xtang =y - x g%, and equating the interceptor to interceptee movement

in time 6t:

(e8) (@]

Vo vy

v
Letting a = 73, and assuming « < 1 (v, < vl)

d d _ d 2] 1/2
(- g)<[-(@)]
dzy- dy 27 1/2

a1 (#)]

with initial conditions:
-.d_x = =
I (x =a)=0 |,

y(x =a) =0 ,

jt is relatively easy to show the solution curve is:

_ o a 1 x \1to 1 x \ - | *
v a(T-_a5>+?[m<5> i T—_a<3> J

(2) Approximate solution on the sphere. As a first order
approximation, we will make the following assumptions:

(a) The interceptee is located on the equator and traveling
due east along the great circle route [there is no loss in generality to this
assumption, providing the interceptee is confined to travel on a great circle
route. This being assumed true, then a judicious choice of coordinates (ie,
rotating the sphere) will put the interceptee on the equator as desired].

(b) The initial position of the interceptee is analogous to
that of the planar case, in that the initial Tine of sight of the inter-
ceptor is perpendicular to the Tine of travel of the interceptee.

*Ritger and Rose, Differential Equations with Applications, p. 512.

10
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(c) The initial displacement of the interceptor from the inter-
ceptee is small so that certain trigonometric approximations can be made [eg,
spherical position of the interceptor {in ¢, 8 coordinates} is such that
sin ¢ = 1, this being true when the interceptor position is close to the
equator; eg, ¢ = 90° £ 20°]. Continuing as before, at some time &t, the
placement of interceptor and interceptee will be as follows:

Now, for point B

-J:...—. ., @21/2 -
6t-—v1fvl+s1n ¢<d¢>:l d¢ - a

where a is the spherical radius, andﬂeasuring S, from point B

s —
=9 + tan-! Lcos ¢ sin ¢<g—g>]

The second term is obtained from spherical trigonometry

mla

A
)
i £
799 cos £ = sin ¢ cos 8
sin 8 = sin £ sin ¢
cos 8 = cos £ sin ¢
+ sin 2 cos ¢ cos @
\_D——-——\f—‘——/
0

11
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tan 6 = cos ¢ tan g
and from Carton-Wippern*, where:

tan ¢ = sin ¢ gg

Equating both sides at time &t:
L 1 + sin? ¢ d8 '\ 1 d¢ = 1 d |8 + tan"!( sin ¢ cos ¢ de
v, de¢ . v, d¢

Now, using the assumption from Id(2)(c) and by assuming that the term cos ¢(:g%>

remains small so as to approximate tan~! u = u, the equation of the pursuit
curve becomes:

;—:—[:1 +<_g_g>2:]1/z _ g_¢,:e + cos ¢<g—g>:’

Continuing on the right side with:

de d2e . do d2e
HE + COS ¢ a;; - s1in ¢ HE = cos ¢ d¢2

and letting

v

;—:-(a<1> , »

133
it

«[1 + p2]'/2 = cos ¢ %g

_ d
ocsec¢d¢—[l—+-w

a In|sec ¢ +tang | =1In]p+ (p2 +1)1/2 | +c¢

Letting p =0 at ¢ = $o> then

“Carlton-Wippern, Surface Navigation and Geodesy, A Parametric Approach,
pp. 38-43.

12
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[+ 1
o+ (p? + 1)1/2 = [_%_Hgg X J

where
=%, T
L A
¢, -
YT 'g

Solving for p, the differential equation for 8 is
de _ 1 - -
) = 2[:(tan %X,) ® . (tan x)* - (tan xo)a_- (tan x) a:]‘

Thus, the integral equation for 6 as a function of ¢, assuming convergence,
becomes:

. ¢ |
B =48, + é{f [(tan %)™ - (tan 0 - (tan x)* - (tan )™ | do I
¢0

where, for the interceptor, 6 = 8 ¢ = ¢, at time t = 0.

0’

To show that the integral will, in fact, converge it is necessary to change

variables, ¢ = % - L, and use L, the conventional latitude variable.

Then

tana<% + %>= tan'a<% )

and the integral becomes

2L
L a L o\
8 =106, + %]JLD' tan'“<§£> tan <%>- tan“(-z—g)tan'a(-;-)du ,

where as the interceptor approaches the interceptee, L (or U) - 0. In this
1imit, it is easy to show that the above integral (in fact, the entire spheri-
cal analysis) converges to the planar case, on the local topocentric plane.

13
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II OVERVIEW OF MINIMUM DISTANCE NAVIGATION ON COMPOSITE SURFACES

In this section, we will confine our attention to solving for the curve of
minimum distance between two points when the surface on which the solution is
sought can be described as two simple surfaces (eg, a sphere cut in half, so
that the surface is a hemisphere bounded on top by a plane). We let S, be the

first simple surface with geodesic Y., S2 be the second simple surface with
geodesic y, and Tet ¢ = c(u, )\) be the Tocus of points which make up the bound-
ary between the two surfaces. If the geodesic between two points traverse

the boundary c at say (u, xo), then wl(uo, A,) = wa(uo, X,) by continuity.
Futhermore, if the boundary is smooth and continuous,

oY 3,

> 1 _ 2
T1 _55— * (uoa xo) "Tz —E (una Xo) ’

the tangent must also be continuous. While these conditions are necessary,
they are not sufficient. The problem is a nonlinear one, requiring judicious
evaluation.

_Example. Let 31, 32 and ;3 be three points on the equator of a sphere equally
spaced (ie, Bl at 0° longitude, Bz at 120° 1ongitude and 33 at 240°
longitude). The geodesic (wl) between 31 and 32 lies along the equator, from
31’ towards the east. Similarly, the geodesic (wz) between Ea and 33 1ies
along the equator, from ;2 towards the east. Patching the two minima curves

-» -> >
¥, and ¥, together at 32 it is observed that, at P, ¢1(P2) = wa(Pa) and

> > -+
T.(P) =T,(,),

> -»>
but the true geodesic from P to P  is not o +9,.

14
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> -»> >
The geodesic from P to P_ starts at P and goes westward, around the back to

-

P.. The solutions for geodesics on more complicated surfaces (such as a com-
posite surfaces) can become very involved and are not necessarily unique. In
the next section we will address a simple yet practical problem, solving for
the curve of minimum distance on a sphere with a spherical dent feature on its
surface. Such a representative surface does exist (approximately) in nature;
an example would be the martian moon Phobus.

IIT A PHOBUS PROTOTYPE COMPOSITE SURFACE NAVIGATION PROBLEM

Consider the following diagram:

Excavated sphere
of radius 3 —

«—— sphere of radius R

Thus, the spherical dent in the outer sphere of radius R is a removed partial
sphere of radius a. A useful coordinate system is one which describes the
boundary between the two surfaces as a constant.

A
/

A, F;;\a
/ -~ N\
/ ¢o \
¢

15
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The outer sphere has its center at the origin, the boundary between the two
simple surfaces at ¢ = ¢ . The removed sphere having its center at A and

corresponding boundary at ¢ = &0. Letting the outer sphere be S1 with geode-
sic ¥, and the removed (inner) sphere be S, with geodesic y,, five situations

> >
can arise for any two distinct points (P and P):

-»> -
a. Po and P1 may both reside in 51’

-> -
b. P, and P may both reside in 5 , or

-+ >
c. P, and P in S, and S, respectively (or vice versa).

. > - .
d&e. P or P1 or both may reside on the boundary between S & 5, .

¥

Irrespective of the case, the boundary between S1 and S, not being smooth
requires us to consider three curves or paths when solving for the curve
-» -»>

of minimum distance between'points P0 and Pl, these paths are ¢ , ¢2* and a
third path along the boundary between the two surfaces (at ¢ = ¢ , call it

> ->
wa). Assuming P , P1 are unit vectors, then in 51’ the distance between

> > > ->
points is AS = R cos™’ (P, - P,), similarly in 5, A5, = a cos™' (P - P ).

Example 1.

-> >
Let P, be on the outer sphere, P be in the dent. Find the minimum distance

-
curve. Let P(¢0, \) be on the point on the boundary where the minimum
distance curve passes through. The inner and outer spheres are assumed to be

-»> > .
longitude aligned, that is, P(¢, \) = P(¢0, ). The idea is to solve for X
that minimizes the total distance.

-

- > > A
AS()) = R cos™?! L_Po - P(s,, x)] + a cos'll: P, - P(g,, Xi]

and set

*which are great circle curves on the respective spheres, S, and Sz.

16
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In general, a minima curve between points may cross the boundary twice, at

- -
P(¢, \) and P(¢, u). From this, there are several test cases which must be
simultaneously checked, solved for and compared to find the true minima.

Example 2.
-+ -+
Let P, P, be on the outer sphere (51)' Under certain conditions, the

minima curve may go into S,, ride on the border or remain totally in S .

Sample geodesics

II + Pl

II1 ~ AR MR NS A

- For each case a test distance is used AS =R cos™? (;o . ;1) provided all
along ¢, ¢ 2 $, -

17
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-+ + . -+ .
AS, = R cos'lEPo - P(9,, x)] + a cos"[:P(¢o, x) - P(e,, uﬂ-+

R cos“[g(q&o, u) - ;1]

and
aAS2 _ 3as, -
an  ou

AS, =R cos"[:B . P(¢0, x)] + R sin ¢, - [x-ul]l+R cos‘l[:3(¢o, u) - Elj

0

3AS 3AS
3

And so forth. Once P(¢, \), P(¢, u), etc. are found which satisfy the minimum

-+ -+
distance criteria, it is an easy matter to go from P to P by way of dividing

up the curve and using the appropriate parametric geodesic relation.® For
navigation on the inside sphere (S,) it is convenient to think of the S, south

pole as the S1 north pole, ie, solve the S2 portion as though one was
navigating at or near the south pole of the excavated sphere, but report the
position latitude or = - ¢ or northern hemisphere latitude. In this way the

concept of north pole remains consistent, but the curves must be reported
separately with respect to each simple surface (inner or outer).

In summary, while not an easy task, it is certainly possible (if not triv-
jal) to examine on a case by case basis, potential geodesics for the minimum
distance between points on this simple composite surface, and then solving for
the absolute minima. Depending on the positions of A (the excavated or
removed sphere center) and the ratio of a to R, it may become possible to make

> >
certain generalizations (if P, and P are in 5, the geodesic curve may always
be b, and never. include $, or p_ curves; also, if the removed spherical por-
tion is less than a hemisphere, b, the border or rim geodesic vanishes as a
potential solution) thus, each problem must be evaluated on its own merits.

Aﬁl/? ﬁzzgéffaéuﬂ“
J v

K. Carlton-Wippern, PhD.
Operations Research Analyst

SCarlton-Wippern, op. cit., pp. 38-43.
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PREFACE

This is the third addendum to AFSPACECOM Technical Note, Surface Navigation
and Geodesy a Parametric Approach, 1 March 1988. This addendum addresses the
derivation of the commonly used navigation curve called the rhumb line or
loxodrome.

The loxodrome is a well known curve, constructed so that the angle between any
meridian and the loxodrome is constant throughout the curve.! Although there
are many ways to derive this curve, the derivation presented here is based on
analysis provided in the subject technical note? and on well known results
from general curvilinear analysis. One further property of the loxodrome
should be mentioned; when plotted on a Mercator projection the loxodrome be-
comes a straight line.

!The curve of constant compass heading.
2Carlton-Wippern, Surface Navigation and Geodesy a Parametric Approach, pp 4,
33-35.

THIS TECHNICAL NOTE IS THE WORK OF DR K. CARLTON-WIPPERN AND DOES NOT
NECESSARILY REPRESENT THE OFFICIAL VIEW OF THE U.S. AIR FORCE.
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I INTRODUCTION AND GENERAL DERIVATION

Consider u,u, and uy curvilinear coordinates with Jacobian scaling factors

h,, h, and ha.

Then
(ds)? = (hldul)2 + (hzduz)2 + (hadua)2 ,

and if u, u, and u, can be written as a function of X

> du du, | du, . -
D=h, et h, et h, I ,* where D is the tangent (or heading)
vector.

Assume the surface under consideration can be constructed by setting one of
the curvilinear coordinate variables to a constant, u = constant (eg, for a

sphere p = a).

The heading angle, measured off one of the remaining principle axes, can be
determine by

(by chain rule). (1)

By assuming tan g a constant, equation (1) becomes the loxodrome generating
differential equation which relates how u, is linked with u_. This equation

will be used throughout this addendum. Equation (1) can, in addition to
generating a loxodrome curve, be used to generate a general Mercator projec-

tion of a surface.

II APPLICATION TO THE PLANAR SURFACE

With

-
dz \?2 <dr>2 2<d9>2 1/2

_<a-i'> + a +r ™ dy |,

obtain two loxodrome forms on the plane, both by setting z = constant. For

the first case:

*Carlton-Wippern, op.cit. p 4.
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tan ¢ = g%

which solves as
y =y, +tany (x - x ) (a straight Tline).
For the second case:

_ .. ds
tanzp—r‘-a;

which solves as

ecotw(e-eo)

. (an exponential spiral).

The differential equation for the second case may appear to the reader to be a
familiar relation.? :

The first case solution (a straight 1ine) is coincidently the planar surface
geodesic. A similar analogy exists for the cylinder (where helix is both
cylindrical geodesic and loxodrome).

III APPLICATION TO THE CONIC SURFACE

With

I[g{) co e (§ )] e

(the surface generated by setting ¢ = «, a constant), then

_ . de
tan ¢ = p sin « HH R

which solves as

ecotwosina-(e—eo)
0

with ¢ oriented as discussed in Surface Navigation and Geodesy.® Distance
measurement along the conic loxodrome is accomplished by

L[j[?+ p? sin? a(%%)le/zdp
JP [ﬁ + tan? ﬁ] 1/2 dp

2Thomas, Calculus and Analytical Geometry, p. 372, equation 7a.
3Carlton-Wippern, op.cit. p 19.

As
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by direct substitution; then:

p
As = sec ¢ Ap
pO
Singularities occur when =7 (n % %) with n =0, 1, 2 . . . at which
point p = p  and
0
As = p sin a ¢ AB
0
0
Also of interest is when v = nm with n =10, #1, 2 . . . at which point 6 = 8,
and
P
As = Ap
pO

IV APPLICATION TO THE SPHERICAL SURFACE

a. Spherical loxodrome.

With

2 2 1/2
A5=I[p2<—g;§> + p? sin’-¢<g—g>] / da |,

and p = a, the lToxodrome is generated by

-tan ¢ = sin ¢ gg X
from which
d¢ _
ST -cot y « (8- 8)

*The minus sign introduced to reflect the proper orientation, y measured from
true north; therefore, d¢ becomes -(d¢) so as to produce a left-handed coor-
dinate system.
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In tan ¢ = -cot ¢ o (0 -8 )
2 0

and

¢, . o(0-
tan % = tan 23 e-COW (6-6,)

For distance measurement along the spherical loxodrome, by direct substitution:

As = a‘['[l + tan? ¢]‘/2 d¢
¢
As = a sec ¥ A¢
¢0
Again two important singularities arise; ¢ =1 (n t %:)with n=20, %1, 2
. here ¢ = $,
and
8
As = a sin ¢, AB ,
8
0
and v = nm with n =20, 21, £2 . . ., where 8 = 8,
and
¢
As = a ¢ A¢
¢0
b. Position and velocity vectors measured in inertial space.
By
¢
As = a sec yp A¢
¢
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changes in ¢ can be determined, then with

8 =0 +tany . In tan ;ﬂ - In tan % ] (¢ decreasiné)
changes in 6 can be determined. Now

X sin ¢ cos [0 + Q(t-1)]

y |=al| sin ¢ sin [8 + Q(t-1)]

z cos ¢

where the term Q(t-t) has been included to correct for the sphere rotating at
an angular velocity Q, measured from some inertial body centered coordinate

system.

For the velocity vector, let

X cos ¢ cos B ¢ - sin ¢ sin 8 8
%f y | =a| cos ¢ sin 6 ¢ + sin ¢ cos 8 8
z - sin ¢ ¢
¢ is determined by As = -a sec  A¢ (for ¢ decreasing) -s = a sec ¢ and

letting § = v (a constant), then - % cos P = é; and with - tan ¢ = sin ¢ g%

. . s _Vvsinyg
sin ¢ 8, and 6 = asm e

then using the chain rule -tan ¢ ¢

Now, by direct substitution:

X -cos P cos ¢ cos B8 - sin ¢ sin 8
d _ . .
Jel Y [TV sin ¢ cos 8 - cos ¢ cos ¢ sin 8
z sin ¢ cos @

We add to this vector the effect of rotation and obtain:

X -cos ¢ cos ¢ cos B - sin ¢ sin B -sin ¢ sin B
y | =v | sin® cos 8 - cos v cos ¢ sin B +aQ | sin ¢ cos B
b4 sin ¢ cos ¢ 0
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where 8 = 8 + Q(t - 1).

NOTE: ﬁ . E = 0 on the static spherical surface, where

X >
R = Yy ’ R = af
z

V. APPLICATION TO THE OBLATE SPHERICAL SURFACE

-a. Slightly oblate spheroidal loxodrome.

We start by introducing the oblate sphercidal curvilinear coordinate system:

X cosh u sin v cos 8
y |=% | cosh u sinv sin 8
z sinh u cos v

This is a curvilinear system which generates oblate spheroids of eccentricity
e by setting u to a constant,” specifically u = sech-! e. Since u is set
constant we will need only find h, and h3 for

dua 2 du3 27 1/2
bs =& HES AR EY A
and

h2
2

I

cosh? u cos? v + sinh? u sin? v

h2

3

cosh? u sin?2 v ,
so with cosh u =

As = %- ij [}l - e? sin? v) ( %% >2 + sin? \><§% >2] ok dX

Now, recognizing £ = ae (a, the semimajor axis of the ellipsoid) and con-
tinuing as before:

Ml

sin v de

_tan w = (1 3 ez Sinz S )1/: o a;

“Which is equivalent to setting curvilinear (ul) constant.
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(1 - e? sin? v)1/2
sin v

dv = -cot p « (8 - 60)

\Y
tanh-! cos v ) - e tanh-? € cos v
((1 - e? sin? v)t/? (1 - e? sin? v)1/2 v
1]
= -cot v (8- 8)
and with e2 << 1,
1 z2 . .
v %— sin v dv = -cot ¢ « (0 - eo)
2 \Y
Tn tan % + %— cos v =-cotp e (0-290) (for v decreasing)
v

0

Thus, this is the first order correction for v [which by the way is not ¢ in
spherical coordinates, but is related by

(1- e2)1/2 cot v = cot ¢].
Distance measured along the loxodrome becomes:

a J [1+tan? ¢]/2 « (1 - e® sin? v)1/2 dv

As

a sec @ uf (1- e? sin2 v)1/? dv, and with the integrand being

2
approximately 1 - %— sin? v

As = a sec ¥ | Av - Ei Av - 1 sin 2
= \Y 4 \V] 2 v

Solution singularities and resolutions are similar to those on the sphere.

v
v

b. Position and velocity vectors measured in inertial space.

With As determining changes in v, which then determines the changes in 8, each
successive v, 8 is found. The inertial position is determined by:

X a sin v cos [8 + Q(t - 1)]
y |= a sin v sin [8 + Q(t - 1)]
z b cos v

where a, b are the semimajor and semiminor axis, respectively.

For the velocity vector, let
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X a cosvcos 8v-asinvsing®
d _ . s . .
FlY |- acosvsinfv+asinvecos 68
z -bsinvv

As in the spherical case v is determined by

ds = -a sec v (1 - e? sin? v)!/2 dv

§ = -asecd (1 - e? sin? v)t/z |

and letting as before § = v, then:

. v .
v = -7 cos P (1 - e? sin? v)-1/2
. v sin
6=—0.w,

a  sin v

and by direct substitution

X -cos v cos 8 cos v (1 - e? sin? v)-1/2 - sin 8 sin
gf y |=v | -cos v sin 8 cos ¢ (1 - e? sin? v)-1/2 + cos 8 sin v
z (1 - e?)t/% « sin v cos ¢ (1 - e? sin? v)-t/2

and finally, taking into account rotation about the polar (or minor) axis:

X -cos v cos 8 cos ¢ (1 - e? sin? v)"*/2 - sin B sin v
y |=v| -cos v sin 8 cos v (1 - e? sin? v)-1/2 + cos B sin ¥
z (1 - e2)1/2 sin v cos v (1 - e? sin? v)-1/2

-sin v sin 8

+aQ | sin v cos 8

0

where B = 8 + Q(t - 1)
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VI SURFACES WHERE THE LOXODROME AND GEODESIC CURVES ARE COINCIDENT

Starting with

(ds)? = h2(du )2 + h2(du,)? + h?(du,)?

and then setting u = constant, thereby generating a surface spanned by

(u,, u);

h3 2 dua 2 |1/
As = 1+ ‘ﬁ: m‘l—; h2 dl.]2

Now, letting

u, =9,
du

i _ .
du. ~ 9

ah,

ER

ah,

R

ah,

R
ah, a(h, : h,)

and — =0 written —————— =0 ,
3g 3(g : g7)

the equation which generates the geodesic becomes:

h, \* du,
hz(ﬁ_ au,
2

h du 2 ]1/2
1+._3._._3
<h du
2 2

But by definition, the loxodrome is generated by
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Yy

du2

o
Q.

tan p = = constant.

pe

2
Solving both equations simultaneously by direct substitution yields:

h tan ¥ _

c
3 sec ¢ ’

h3 =¢cecscy ,

and with c, ¢ constant, this requires that h3 = constant.

The geodesic loxodrome curve relation between u, and u, then becomes:

u, = u? +c! sin ¢ tan ¥ \;‘ha du2 ,

3 3

where ug and c-! are the two constants of integration from the (geodesic)
second order differential equation.

There are surfaces where the geodesic Toxodrome exists (eg, on the plane,

the geodesic loxodrome is a straight line; on the cylinder, the geodesic
Joxodrome is a helix). This mathematical phenomena can occur when by setting
u, = constant, to generate the surface, in turn implies that:

h3 = constant

and
aCh, : h)) )
a(g : g7)

This is not to say that the proposed process of generating the geodesic
loxodrome is necessarily unique [a(h2 : h,)/3(g : g7) = 0 may, in fact, be
over restrictive], but that further analysis into the phenomena of the geode-
sic loxodrome is beyond the scope of this addendum.

On a variety of surfaces (eg, a sphere) a parametric geodesic for a specific
case may also be a loxodrome. For example, consider the geodesic between

two points on a sphere; one point on the equator, the other at the north pole.
The great circle connecting the two points is one of constant heading or
direction (due north). In this case the constant ¢ = 0, forcing ¢ = 0 (or
180°), and the geodesic loxodrome equation reduces to:

where 8 is the longitudinal variable.

10
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VII SUMMARY AND THE TORUS REVISITED

The Toxodrome, while not as efficient a curve as a geodesic for navigation
purposes, is a useful navigation tool and is relatively easy to construct on a
wide variety of surfaces (provided there exists a set of curvilinear coordi-
nates such that a surface under investigation can be generated by setting one
of the coordinates equal to some constant value).

As a final comparison between the tractability of solving for a geodesic or a
loxodrome curve, we revisit the torus. Choosing curvilinear coordinates such

that

X (1 + v sin ¢) cos 6
y |=al| (1L +vsing) sin 8 ,
z v Cos ¢
the torus is generated by setting v = constant, specifically v = g (see
figure 1). :
VA
A
b Lo
I/ v
k — ' > X
a
Figure 1. Cross section of a torus
In this coordinate systemh =a, h, =3y h =a(l +v sin ¢), and setting v

3

=e, €= g (< 1):

As = aj ':ez + (1 + ¢ sin ¢)2<cd’—g >2] o de¢,

11
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then solving for 8 = 8(¢),

d¢
(1 +e sin ¢)[(1 + e sin ¢)2 - c2]/?

However, solving for the loxodrome:

=9, =

l+e¢sing do

-tan ¢ = . d¢

TFesmg 07 -cotvdd

} 2e  tap [:tanf :}
! (1 - ez)x 2 an (1 - ez)x 2

NOTE: The torroidal loxodrome is not 6n1y solvable for 8

[tan (%)+ejl ¢
8 =086 - tan g e -1

|
|
|
B :

= -cot v (8 - 8))

but also invertable so as to make ¢ = ¢(0); given ¢, 9, (ie, calling

¢

| . ﬂ +
1 ¢0 = __.._._Zi_ ° tan‘l[M]

(1 - e2)t/2 (1 - €?)t/?

¢ = 2»tan‘1 {}1 - ez)‘/2 « tan [Ll—l—%éliéi (@0 - cot ¢ (8 - Bo)i} - e:} ) ,

and the measurement of distance along the torroidal loxodrome becomes:

a f [;z + (1 + ¢ sin ¢)2<g—g>2] /e de

As =

As = LJO [; 4(1*esing  db e de remembering e = b
* de a

As =

b sec p A¢

12
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